
Submitted by
Dipl.-Inform.
Sibylle Rosa Natalina
Möhle-Rotondi

Submitted at
LIT Secure and
Correct Systems Lab

Supervisor and
First Evaluator
Prof.
Dr. Armin Biere

Second Evaluator
Prof.
Adnan Darwiche, Ph.D.

June 2022

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Formalizing Methods
for Propositional Model
Counting and Enumeration

Doctoral Thesis

to obtain the academic degree of

Doktorin der technischen Wissenschaften

in the Doctoral Program

Technische Wissenschaften

Sibylle Rosa Natalina Möhle-Rotondi: Formalizing Methods for Propositional Model
Counting and Enumeration, © June 2022

Dreams don’t work unless you do.

— John C. Maxwell

Dedicated to Frank, Dario, and Silvan
who always supported my dreams.

A B S T R A C T

Many real-world problems, such as probabilistic reasoning, can be formulated as
the task of counting the models of a propositional formula, called #SAT. A model
of a formula is an assignment to its variables such that the formula evaluates
to true. Related to model counting is model enumeration, or All-SAT, in which
the models of a formula are recorded. It is applied, e. g., in model checking and
verification. Both #SAT and All-SAT are therefore of practical relevance.

In principle, we could check for every possible assignment whether it is a model
of the formula. However, formulae stemming from real-world applications might
be defined over thousands or millions of variables, and the number of possible
assignments is exponential in the number of variables occurring in the formula.
Clearly, checking them one by one is prohibitive. Therefore, state-of-the-art #SAT
solvers partition the input formula into subformulae over pairwise disjoint sets
of variables, called components, process them separately, and then combine the
results. Each subformula is defined over a potentially small subset of the set of
input variables, and the search space to be processed in each computation might
be significantly smaller than the whole search space. Another means to reduce
the number of assignments to be checked is to detect partial models, i. e., models
in which not all variables occur. A partial model represents a set of total mod-
els whose size is exponential in the number of unassigned variables. The corre-
sponding total assignments need not be checked one by one, hence partial model
detection bears the potential to significantly reduce work in both space and time.

In this thesis, we develop and rigorously formalize methods for propositional
model counting and enumeration with a focus on the detection of partial models.
We first present two dual model counting methods. Simultaneously processing
the formula and its negation enables us to detect short partial models. Our first
approach is based on the Davis-Putnam-Loveland-Logemann (DPLL) algorithm.
Our second method implements methods used in modern SAT solvers, such as
conflict-driven clause learning (CDCL) and conflict-driven backjumping.

However, backjumping might cause the solver to repeat assignments just un-
done. To avoid these repetitions at least in part, conflict-driven clause learning
was combined with chronological backtracking. In the context of model enumera-
tion and counting, this allows for efficiently escaping search space regions without
models while exploring the search space neighboring previously detected models.
We formalize this method, which is called chronological CDCL, and its application
to non-dual model counting and provide correctness proofs.

Partial models can be detected by checking whether a partial assignment already
logically entails the input formula. We present this entailment check in four flavors
of different strengths and computational complexity some of which make use of
dual reasoning. Since entailment checks might be expensive, we finally present a
method for shrinking total models by means of dual reasoning.

The focus of our work is on formalization and proofs. Preliminary results, either
theoretical or experimental, show that the methods presented in this thesis enable
us to find short partial models. Our methods are applicable in various domains
and point out future directions for research in #SAT and All-SAT.

v

Z U S A M M E N FA S S U N G

Viele praktisch relevante Anwendungen wie das probabilistische Schliessen kön-
nen als die Aufgabe formuliert werden, die Modelle einer aussagenlogischen For-
mel zu zählen. Diese Aufgabe wird #SAT genannt. Eine Zuweisung von Wahrheits-
werten zu den Variablen einer Formel ist ein Modell einer aussagenlogischen
Formel, wenn sie unter dieser Variablenbelegung zu wahr evaluiert. Eine ähnliche
Aufgabenstellung ist All-SAT, das Aufzählen aller Modelle einer Formel. Anwen-
dungsbeispiele wie Model Checking und Verifikation unterstreichen die Relevanz
von #SAT und All-SAT in der Praxis.

Jede mögliche Wertzuweisung zu den Variablen einzeln zu testen ist bei Proble-
men aus der Praxis nicht durchführbar, da die Formeln Abertausende oder Millio-
nen Variablen enthalten können. Moderne #SAT-Solver partitionieren die Formel
daher in Teilformeln mit paarweise disjunkten Variablenmengen, verarbeiten diese
einzeln und kombinieren die Resultate. Die Anzahl der in den einzelnen Berech-
nungen zu testenden Zuweisungen wird dadurch reduziert. Diese Reduktion wird
auch durch das Finden von partiellen Modellen erreicht. In einem partiellen Mod-
ell kommen nicht alle Variablen vor, und es repräsentiert eine Menge von totalen
Modellen, welche nicht einzeln getestet werden müssen, was eine signifikante Re-
duktion von Rechenzeit und Speicherbedarf zur Folge hat.

In dieser Dissertation entwickeln wir Methoden und Formalisierungen für das
Zählen und Aufzählen von Modellen aussagenlogischer Formeln mit dem Schwer-
punkt auf dem Auffinden von partiellen Modellen. Zuerst stellen wir zwei duale
Methoden für das Zählen von Modellen vor. Die simultane Verarbeitung der
Formel und ihrer Negation ermöglicht das Finden von kurzen partiellen Mod-
ellen. Unser erster Ansatz basiert auf dem Davis-Putnam-Loveland-Logemann-
(DPLL)-Algorithmus. Unser zweites Verfahren unterstützt Methoden, welche in
modernen SAT-Solvern verwendet werden, wie zum Beispiel das konfliktbasierte
Lernen von Klauseln (CDCL) sowie das konfliktgetriebene Backtracking.

Nach dem Backtracking wiederholt der Solver oft Zuweisungen, die er soeben
rückgängig gemacht hat. Um diese Wiederholungen zumindest teilweilse zu ver-
meiden, wurde CDCL mit chronologischem Backtracking kombiniert. Bezogen
auf das Zählen von Modellen ermöglicht dies einerseits, Suchbereiche, welche
kein Modell enthalten, effizient zu verlassen, und andererseits, Suchbereich in der
Nachbarschaft von gefundenen Modellen zu untersuchen. Wir formalisieren chro-
nologisches CDCL und seine Anwendung auf das nicht-duale Zählen von Mod-
ellen und liefern formale Korrektheitsbeweise.

Partielle Modelle sind auch partielle Zuweisungen, aus welchen die Formel
gefolgert werden kann. Wir präsentieren den zugehörigen Test in vier Varianten
unterschiedlicher Mächtigkeit und Rechenkomplexität, von welchen einige duales
Schliessen verwenden. Da diese Tests aufwändig sein können, stellen wir zuletzt
ein Verfahren für das Kürzen von totalen Modellen mittels dualen Schliessens vor.

Der Fokus in unserer Arbeit liegt auf Formalisierungen und Beweisen. Erste
Resultate sowohl theoretischer als auch experimenteller Natur zeigen, dass die
vorgestellten Verfahren das Finden von kurzen partiellen Modellen ermöglichen.
Unsere Methoden sind für verschiedene Anwendungsbereiche geeignet und zei-
gen zukünftige Forschungsrichtungen in #SAT und All-SAT auf.

vii

A C K N O W L E D G E M E N T S

With this thesis, a chapter of my life is closed and another opened. Looking back I
see many persons I would like to thank for supporting me and my dream to join
academia for research.

My supervisor Armin Biere gave me the freedom I requested for my research
and the guidance I needed. I want to thank him for his support, the valuable
feedback he provided on my work, and for many fruitful discussions.

I am thankful to Christoph Beierle who arouse my interest in logic during my
studies at the FernUniversität in Hagen and supported my wish to pursue an
academic career.

Life does not follow our plans, and during my PhD I joined various institutes. I
want to thank the heads of these groups giving me the opportunity to join them.
They supported me and gave me the freedom I needed. I am thankful to my
colleagues for many agreeable coffee breaks both with and without the usage
of a whiteboard, for group meetings and undertakings. I want to thank Tobias
Philipp and Christoph Wernhard for many interesting technical discussions at TU
Dresden, where my journey started. Tobias, besides sharing office with me, arose
my interest in formalization and guided my first steps in this challenging world.
Christoph provided me with a view on logic from a different perspective, and
his PIE environment was of great help in the implementation of my dual model
counter in SWI-Prolog. I would like to thank Mathias Fleury for teaching me many
implementation details of SAT solvers, for many fruitful discussions and for his
valuable feedback on my work and of course for his company in conquering Upper
Austrian summits. I am grateful to Martina Seidl who showed me the potential of
my work in a different research area and gave me the opportunity to participate
in teaching. Martina provided valuable feedback on my research, and I enjoyed
our technical discussions, our walks and undertakings. I enjoy teaching a lot, and
I want to thank Richard Küng for mentoring me as part of a didactic course I was
taking. Richard involved me in building up his course from scratch. I learned a
lot about teaching and writing high-quality lecture notes.

I want to thank Roberto Sebastiani and Andrea Passerini for hosting me during
my research stay at the University of Trento. Roberto and I had many intense
discussions, and I am grateful for this co-operation.

My thanks go to Adnan Darwiche at the University of California who agreed to
evaluate my thesis.

I am grateful to have a supporting family by my side. My husband Frank went
with me through both easy and difficult times. Our sons Dario and Silvan encour-
aged me to pursue my dream of doing a PhD knowing this would mean to live
apart. During my studies, and even before starting my PhD, Frank, Dario, and
Silvan went for hikes and undertook things without me such that I could work
towards my goal during one of the most beautiful winters I can remember.

ix

C O N T E N T S

i introduction 1

1 motivation and overview 3

2 outline of the thesis 9

3 contributions 11

3.1 Paper 1: An Abstract Dual Propositional Model Counter 11

3.2 Paper 2: Dualizing Projected Model Counting 12

3.3 Paper 3: Backing Backtracking . 13

3.4 Paper 4: Combining Conflict-Driven Clause Learning and Chrono-
logical Backtracking for Propositional Model Counting 14

3.5 Paper 5: Four Flavors of Entailment 15

3.6 Paper 6: On Enumerating Short Projected Models 16

4 topics beyond the scope of this thesis 19

4.1 Weighted Model Counting . 19

4.2 Structure-Aware Model Counting . 19

4.3 Approximate Model Counting . 20

4.4 Knowledge Compilation . 20

4.5 Preprocessing and Inprocessing . 23

ii background 25

5 propositional satisfiability 27

6 sat-based exact unweighted model counting 33

7 sat-based irredundant model enumeration 37

8 projection 41

iii dual projected model counting 43

9 paper 1 : an abstract dual propositional model counter 45

9.1 Introduction . 45

9.2 Preliminaries . 46

9.2.1 Propositional Satisfiability and Model Counting 46

9.2.2 The Davis Putnam Logemann Loveland Procedure 47

9.2.3 Counting Models by Means of the Davis Putnam Procedure 47

9.2.4 An Abstract Framework for Propositional Model Counting . 48

9.3 Counting Models by Taking into Account the Negated Formula . . 48

9.4 Abstract Dual #DPLL . 50

9.4.1 States and Transition Relations 50

9.4.2 Rules . 51

9.4.3 Unit Propagation . 52

9.4.4 Soundness . 52

9.5 Example . 53

9.6 Conclusion and Future Work . 56

10 discussion of paper 1 57

10.1 Main Contributions . 57

10.2 Correlation of the Residuals . 58

10.3 Model Counting Using Only the Negated Formula 59

10.4 Computing Models . 60

xi

xii contents

11 paper 2 : dualizing projected model counting 61

11.1 Introduction . 61

11.2 Preliminaries . 63

11.3 Duality . 65

11.4 Calculus . 66

11.5 Implementation . 70

11.6 Experiments . 71

11.7 Related Work . 72

11.8 Conclusion . 72

12 discussion of paper 2 75

12.1 Main Contributions . 75

12.2 Decision Strategy . 76

12.3 Flipping and Discounting by an Example 78

12.4 Conflict-Driven Clause Learning in the Dual Formula 80

12.5 Propagating Input Literals in the Dual Formula 81

12.6 Dual Blocking Clauses . 81

12.7 Where Our Dual Approach Really Wins 82

13 dualcountpro – a dual model counter in prolog 85

iv chronological conflict-driven clause learning for pro-
positional model counting 91

14 paper 3 : backing backtracking 93

14.1 Introduction . 93

14.2 Preliminaries . 95

14.3 Generalizing CDCL with Chronological Backtracking 95

14.4 Calculus . 97

14.5 Proofs . 100

14.6 Algorithm . 102

14.7 Implementation . 104

14.8 Experiments . 105

14.9 Conclusion . 106

15 discussion of paper 3 109

15.1 Main Contributions . 109

15.2 Conflict at Lower Decision Level . 110

15.3 The Impact of Reusing the Trail . 112

16 paper 4 : combining conflict-driven clause learning and

chronological backtracking for propositional model

counting 115

16.1 Introduction . 115

16.2 Preliminaries . 117

16.3 Counting via Enumeration with Chronological CDCL 119

16.4 Calculus . 121

16.5 Proofs . 124

16.5.1 Invariants in Non-Terminal States 124

16.5.2 Equivalence and Model Count 127

16.5.3 Progress . 127

16.5.4 Termination . 128

16.6 Conclusion . 128

17 discussion of paper 4 129

17.1 Main Contributions . 129

contents xiii

17.2 The Pending Search Space by an Example 130

17.3 Towards an Alternative Termination Condition 131

v partial model enumeration 133

18 paper 5 : four flavors of entailment 135

18.1 Introduction . 135

18.2 Preliminaries . 136

18.3 Early Pruning for Projected Model Enumeration 137

18.4 Testing Entailment . 139

18.5 Formalization . 140

18.6 Conclusion . 142

19 discussion of paper 5 143

19.1 Main Contributions . 143

19.2 Model Detection . 144

20 paper 6 : on enumerating short projected models 147

20.1 Introduction . 147

20.2 Overview of Contributions . 152

20.2.1 Correctness with Respect to Model Enumeration 152

20.2.2 Model Shrinking . 152

20.2.3 Irredundant Model Enumeration Under Projection 152

20.2.4 Redundant Model Enumeration Under Projection 152

20.3 Preliminaries . 153

20.3.1 Propositional Satisfiability (SAT) 153

20.3.2 Conflict-Driven Clause Learning 154

20.3.3 Incremental SAT Solving . 155

20.3.4 Projection . 155

20.3.5 Dual Representation of a Formula 156

20.4 Soundness and Completeness . 157

20.5 Dual Reasoning for Model Shrinking 158

20.6 Dual Encoding of Blocking Clauses 159

20.7 Projected Model Enumeration Without Repetition 162

20.7.1 Main Algorithm . 162

20.7.2 Unit Propagation . 164

20.7.3 Conflict Analysis . 165

20.8 Formalizing Projected Irredundant Model Enumeration 165

20.8.1 Calculus . 165

20.8.2 Example . 167

20.8.3 Proofs . 169

20.8.4 Generalization to Partial Model Detection 176

20.9 Conflict-Driven Clause Learning for Redundant All-SAT 177

20.10Projected Redundant Model Enumeration 178

20.10.1 Algorithm and Calculus . 178

20.10.2 Example . 179

20.10.3 Proofs . 180

20.10.4 Generalization . 182

20.11Conclusion . 182

21 discussion of paper 6 185

21.1 Main Contributions . 185

21.2 Strong Completeness in Partial Model Enumeration 186

21.3 Learnt Clauses in Redundant Model Enumeration 186

xiv contents

vi conclusion 189

22 discussion 191

23 summary 195

24 future work 197

bibliography 199

index 223

L I S T O F F I G U R E S

Figure 2.1 Outline of the thesis . 9

Figure 4.1 DAG representation of CNF and DNF 22

Figure 5.1 DPLL rules . 29

Figure 5.2 CDCL rules . 31

Figure 6.1 #DPLL rules . 35

Figure 7.1 All-CDCL rules . 38

Figure 9.1 Rules in Abstract #DPLL . 49

Figure 9.2 Rules in Abstract Dual #DPLL 51

Figure 11.1 Output of Dualiza applied to a single clause 63

Figure 11.2 Calculus describing dual projected model counting 67

Figure 11.2 Calculus describing dual projected model counting (cont.) . 68

Figure 12.1 Solver comparison for non-decomposing formulae 82

Figure 13.1 SWI-Prolog code for outer loop of DualCountPro 87

Figure 13.2 Rule BN0L from the dual model counting calculus 88

Figure 13.3 SWI-Prolog code for rule BN0L. 88

Figure 14.1 CDCL invariants . 94

Figure 14.2 Backtracking in the presence of out-of-order literals 97

Figure 14.3 Calculus capturing CDCL with chronological backtracking 97

Figure 14.4 Algorithm for CDCL with chronological backtracking . . . 103

Figure 14.5 Chronological CDCL on SAT Competition 2018 instances . 105

Figure 15.1 Performance of CaDiCaL with chronological CDCL 113

Figure 16.1 Backtracking in the presence of out-of-order literals 118

Figure 16.2 Trail after backtracking chronologically in model counting . 120

Figure 16.3 Rules for model enumeration with chronological CDCL . . 122

Figure 16.4 Execution trace for model counting with chronological CDCL123

Figure 16.5 Invariants for model counting with chronological CDCL . . 124

Figure 18.1 Early pruning algorithm for projected model enumeration . 138

Figure 18.2 Calculus for model enumeration using entailment checks . 141

Figure 20.1 Algorithm for irredundant model enumeration 163

Figure 20.2 Algorithms for unit propagation and conflict analysis for
irredundant model enumeration 164

Figure 20.3 Rules for projected model enumeration without repetition . 166

Figure 20.4 Invariants for irredundant projected model enumeration . . 170

Figure 20.5 Mapping of state transitions to lists 174

Figure 20.6 Backtracking after model in redundant model enumeration 179

Figure 20.7 Invariants for redundant projected model enumeration . . . 181

xv

L I S T O F TA B L E S

Table 5.1 DPLL execution example . 30

Table 5.2 CDCL execution example . 32

Table 6.1 #DPLL example . 36

Table 7.1 All-CDCL example . 39

Table 9.1 Trace of Abstract Dual #DPLL with unit propagation 54

Table 9.2 Trace of Abstract #DPLL with unit propagation 55

Table 10.1 Trace of Abstract Dual #DPLL with unit propagation find-
ing partial models . 58

Table 10.2 Execution steps for Abstract Dual #DPLL considering only
the negated formula . 59

Table 12.1 Flipping and discounting in dual projected model counting 79

Table 12.2 Experimental results for nrp formulae 83

Table 14.1 Chronological CDCL on SAT Competition 2018 instances . 106

Table 15.1 Performance of CaDiCaL before and after optimization
for SAT Race 2019 . 114

Table 17.1 Execution of model counting with chronological CDCL . . 130

Table 18.1 Examples requiring different entailment checks 140

Table 20.1 Execution trace for irredundant model enumeration 168

Table 20.2 Execution trace for redundant model enumeration 180

xvi

Part I

I N T R O D U C T I O N

1
M O T I VAT I O N A N D O V E RV I E W

Many tasks relevant to practice may be formulated as propositional formulae.
These formulae are defined over variables which represent some statement and
can be assigned the logical values true and false in order to express that the corre-
sponding statement does or does not hold. The value of a variable is inverted by
applying the negation operator (¬) to it. Variables can be combined to form more
complex expressions, such as the formulae mentioned above, by means of logical
connectives. In this thesis, we mostly consider the logical connectives conjunc-
tion (∧) and disjunction (∨) as well as equivalence (↔). A conjunction of variables
is true if all its variables are true. In contrast, a disjunction of variables is true if
at least one of its variables is true. Two variables are logically equivalent if they
have the same logical value. These logical connectives and the negation operator
are similarly applicable to formulae. Finally, the truth value of a formula is deter-
mined by assigning its variables their truth value and by recursively propagating
these truth values through the connectives.

A satisfiability solver can be used to determine whether the variables of a for-
mula can be assigned values such that the formula evaluates to true under the
resulting assignment, or, stated otherwise, whether this formula is satisfiable. This
problem is known as the satisfiability problem of propositional logic, or SAT. An assign-
ment satisfying a formula is also referred to as model of that formula. A formula
may have multiple models, and for some tasks one might not only be interested in
the satisfiability of the formula (SAT) but in the models themselves (All-SAT) or
in their number (#SAT). When referring to All-SAT, we sometimes talk of (propo-
sitional) model enumeration.1 Similarly, the term (propositional) model counting2 may
be used when referring to #SAT.

A classical application for #SAT is probabilistic reasoning [13, 120, 167, 174].
Other examples include software and hardware verification [26, 36, 73, 74, 104,
201], model-based diagnosis of physical systems [112], planning [10, 202], prod-
uct configuration [110, 203], and cryptography [106]. Model enumeration is a key
task in, e. g., lazy Satisfiability Modulo Theories [176], predicate abstraction [118],
software product line engineering [80], model checking [21, 131, 184], preimage
computation [119, 180], system engineering [187], and automatic test pattern gen-
eration (ATPG) [190]. The breadth of these tasks demonstrates the practical rele-
vance of both All-SAT and #SAT and the need for efficient solving methods.

From a computational point of view, All-SAT and #SAT are harder than SAT [90].
But why is this the case? After all, SAT, All-SAT, and #SAT look not that different.
The reason is a simple one. To show that a formula is satisfiable, it is sufficient to

1 The focus in this thesis is on model enumeration without repetition, i.e., models must be recorded
only once.

2 In this thesis, we refer to exact model counting, in contrast to approximate model counting.

3

4 motivation and overview

provide one single model. In contrast, in All-SAT and #SAT all possible assignments
need be checked, and their number is exponential in the number of variables.
More precisely, each variable can be assigned one out of two values, and there
are 23 = 8 possible assignments for 3 variables, 210 = 1′024 possible assignments
for 10 variables, 2100 = 1′267′650′600′228′229′401′496′703′205′376 ≈ 1.27 · 1030 pos-
sible assignments for 100 variables, 21′000 ≈ 1.07 · 10301 possible assignments for
1′000 variables—a number 302 digits long—and so on, and industrial problems
may contain millions of variables. To get a better grasp of this huge number, we
compare it to the number of particles in the observable universe. This number is
estimated to be 4 · 1080[193], which is way smaller than the number of assignments
we need to check. These assignments form the search space, whose size is given by
their number. When devising a model counting or model enumeration algorithm,
one should therefore aim at pruning the search space to be processed at once,
i. e., reducing the number of assignments to be checked. This way, SAT solvers are
capable of solving formulae with millions of variables.

The state of the art in #SAT solving is to partition the input formula into subfor-
mulae, or components, defined over pairwise disjoint variable sets. The model count
of each component is then computed separately and the results combined. In that
manner, the search space to be processed during each computation is reduced,
and the individual computations become feasible. This idea was first proposed by
Bayardo Jr. and Pehoushek [15] and subsequently improved in several ways. These
improvements mostly affect data structures and algorithms for, e. g., caching and
selecting components or binary constraint propagation [172, 173, 189]. The fact
that the individual components can be processed independently motivated the
implementation of a parallel [37] and a distributed [38] algorithm based on this
approach, which we sometimes refer to as component-based reasoning.

When enumerating the models of a propositional formula, we face similar is-
sues, and similarly to #SAT, in many tasks—and in this thesis—each model must
be enumerated exactly once. This can be ensured by adopting the Davis-Putnam-
Logeman-Loveland (DPLL) algorithm [60]. This means that whenever a conflict
occurs or a model is found, all assignments after the most recent decision3 are
undone, and the decision variable is flipped, i. e., assigned its opposite value. The
decisions are flipped in reverse assignment order, ensuring hat each assignment is
encountered exactly once. The downside of DPLL is that the solver might spend
a significant amount of time in a region of the search space containing no model.
A decision taken much earlier in the search might lead to a partial assignment4

which can not be extended to a model, but the solver is unable to detect this fact.
Instead, by flipping all decisions after the “bad” one by one it checks all total
extensions of the corresponding assignment.

Conflict-driven clause learning (CDCL) [127, 128, 146] enables the solver to de-
tect bad assignments early and to resume the search at an earlier stage with a
more promising assignment. This may result in a significant work saving, and
most state-of-the-art SAT solvers are based on CDCL. They use specialized algo-
rithms, such as conflict analysis for determining an explanation for a conflict and
conflict-driven backjumping for subsequently fixing the search direction.

3 In a decision, a variable is chosen and assigned a value according to some heuristics. This contrasts
propagation, in which a variable need be assigned a specific value in order to avoid a conflict.

4 In a partial assignment not all variables occur. Assignments containing all variables are called total.
Similarly, partial and total models are defined.

motivation and overview 5

However, avoiding repetitions is an issue in CDCL-based All-SAT solvers with
non-chronological backtracking.5 State-of-the-art All-SAT solvers therefore either
rule out the models already found by adding blocking clauses to the formula [104,
131] or adopt chronological backtracking as in DPLL [94]. The first method suffers
from a potential exponential growth of the formula slowing down the solver, while
the latter prevents escaping search space regions without models early.

In some tasks, such as bounded model checking [184] and predicate abstrac-
tion [118], not all variables might be interesting. In this case, the models projected
onto these interesting, or relevant, variables are sought. Consequently, models dif-
fering only in irrelevant variables, i. e., variables which are not interesting, are con-
sidered the same. This can be achieved by either the use of blocking clauses or by
assigning relevant variables before irrelevant ones [94].

These arguments motivated the foci of this thesis, namely pruning the search
space, avoiding repetitions, and projecting models in the context of (proposition)
model counting and enumeration. They are described in the next paragraph.

aim of this thesis . We explore alternative approaches to (projected) propo-
sitional model counting and enumeration. One focus is on pruning the search
space by detecting partial models. In fact, a partial model can be extended to a
total model by arbitrarily assigning the variables which do not occur in it, i. e., are
unassigned, and there exist 2n different total extensions of a partial model with n
unassigned variables. These extensions need not be checked explicitly, and the
labor saving scales exponentially with n. Partial models therefore provide an effi-
cient means not only to represent sets of total models, namely the ones the partial
model can be extended to, but also to reduce the number of assignments to be
checked explicitly. One goal is therefore to find short partial models.

Our second focus is on methods ensuring that each model is counted or enumer-
ated exactly once. As pointed out above, repetitions are an issue in #SAT solvers
based on CDCL with non-chronological backtracking. However, these solvers are
able to escape search regions containing no model early saving a potentially sig-
nificant amount of work. Our second goal is therefore to avoid repetitions while
exploiting the power of CDCL with non-chronological backtracking.

A third focus is on projected model enumeration and enumeration. The goal
here is to avoid finding models which differ only in irrelevant variables.

Each focus is addressed in several publications, and for some of them we pro-
vide multiple solutions. They are described in the rest of this chapter.

detecting partial models . We present three different approaches for par-
tial model detection. In our first approach, we exploit the fact that modern SAT
solvers are able to determine that the input formula evaluates to false under a
partial assignment. We also say that this assignment falsifies the input formula or
that a conflict occurs in the input formula. An assignment falsifying a formula is
called a counter-model of this formula. Notice that it is a model of its negation. Sim-
ilarly, a counter-model of the negation of a formula is a model of this formula. In
other words, if we are given a model of a formula and evaluate the negation of
this formula under this assignment, we obtain a conflict. Accordingly, if a conflict
in the negation of a formula occurs, the corresponding assignment is a model of

5 Throughout this thesis, the terms non-chronological backtracking and conflict-driven backjumping are
used synonymously.

6 motivation and overview

this formula. This allows us to detect partial models and lays the ground for the
first approach presented in this thesis.

The main idea is as follows. We pass both the input formula and its negation
to a #SAT solver. The solver maintains one single trail which represents a (partial)
variable assignment and extends it in an iterative manner. Whenever a conflict in
the negation of the formula occurs, the corresponding trail represents a (partial)
model of the input formula. We call this approach dual and sometimes accordingly
talk about dual reasoning.

Even shorter partial models might be obtained by determining assignments
which logically entail6 the input formula. These assignments are (partial) models of
the formula. It turns out that the test capturing the precise entailment condition is
computationally expensive. However, sometimes a cheaper—but less powerful—
test might be sufficient. We therefore present four entailment checks of different
strengths and computational costs, some of which involve dual reasoning.

Finding partial models in a non-dual setting involves some kind of check, ei-
ther for logical entailment or for satisfiability. These checks are more expensive
than just assigning the remaining variables arbitrarily. And this is also the reason
why state-of-the-art SAT solvers only detect total models. However, partial models
might also be obtained from total models by removing the literals which are not
needed in order to satisfy the input formula. This is the task of model shrinking,
which we address in our most recent work.

For model shrinking we fall back on dual reasoning. Evaluating the total model
under the negation of the formula results in a conflict, and subsequent conflict
analysis allows for identifying the assignments involved in the conflict. These
are exactly the assignments which are sufficient to satisfy the input formula, and
we can escape the region of the search space containing only models by simply
backtracking to the position in the trail before the most recent decisions which do
not contribute to the model.

avoiding finding models multiple times . As already mentioned, #SAT
solvers based on CDCL with non-chronological backtracking may find models
multiple times. Blocking clauses offer a solution to this problem, but they come at
a price. To tackle the performance issues due to the use of blocking clauses, we
explore two different approaches. Our first idea is to associate with each flipped
decision literal the number of models detected at this stage of the search. We re-
fer to this step as flipping. Whenever backtracking past a flipped decision occurs,
the associated model count is subtracted from the number of models found so far,
because these models will be rediscovered later. We call this subtraction discount-
ing. While models may still be detected multiple times, flipping and discounting
ensure that the correct model count is returned.

A second method to avoid the use of blocking clauses is to combine chronologi-
cal backtracking with CDCL. This method, in the following referred to as chronolog-
ical CDCL, was introduced by Nadel and Ryvchin [149] in the context of SAT solv-
ing. It allows for escaping regions of the search space without models early while
remaining in the proximity of the region of the search space currently explored
if neither a model has been found nor a conflict has occurred. This makes sense
in model enumeration and counting, since the search space need be processed ex-

6 Following Sebastiani [177], a partial assignment logically entails a formula, if all its total extensions
satisfy the formula.

motivation and overview 7

haustively. Like CDCL with non-chronological backtracking, chronological CDCL
always terminates.

projecting models . The challenge consists in avoiding the detection of mod-
els which only differ in irrelevant variables, since they are considered the same. Ir-
relevant variables can be variables representing some property which is not inter-
esting for the task at hand, or auxiliary variables introduced by the transformation
of an arbitrary propositional formula into CNF.

In general, models contain both relevant and irrelevant variables. These models
are then projected onto the relevant variables by simply removing the irrelevant
ones. If now two models are the same except, e. g., for one irrelevant variable
occurring positively in one model and negatively in the other, after projection these
models are equal. This situation can occur if an irrelevant variable was decided
before all relevant variables were assigned, because this decision is flipped later.
Prioritizing decisions on relevant variables over decisions on irrelevant variables
ensures that only models differing in at least one relevant variable are found.

Our aim is to detect short projected models. To this end we combine projection
with each of dual reasoning, logical entailment, and model shrinking.

2
O U T L I N E O F T H E T H E S I S

This thesis encompasses one workshop and four conference papers as well as one
article currently under review. Their relationship is visualized in Figure 2.1. The
papers are grouped into three parts visualized by the shadowed boxes.

In Part II, we provide background and related work. In Part III, Part IV, and
Part V described below, the published versions of the papers are included and
discussed separately. For the sake of readability, we unified the notation.

Part III: Pruning for counting

Dual projected model counting
(tools Dualcountpro / Dualiza)

[YSIP’17, ICTAI’18]

Part IV: Chronological CDCL

Formalization of chronological CDCL
(implemented in CaDiCaL / Kissat)

[SAT’19]

Chronological CDCL
for model counting

[GCAI’19]

Part V: Pruning for enumeration

Logical entailment for
enumerating partial models

[SAT’20]

Model shrinking for
enumerating partial models

[submitted]

Figure 2.1: Outline of the thesis.

9

10 outline of the thesis

part iii : dual projected model counting . The main contributions are
two formal frameworks for dual model counting. Our first calculus is based on
the DPLL algorithm. We also present a formalization of a non-dual variant and
argue that our framework is sound. The correctness of our rules is experimentally
checked by means of a proof of concept implemented in SWI-Prolog, called Dual-
CountPro. In our second calculus we extend this approach to support projection
and by methods widely used in state-of-the-art SAT solvers, such as conflict analy-
sis and conflict-driven backjumping. We extend DualCountPro accordingly and
provide a robust and carefully tested implementation in C, called Dualiza, and
discuss implementation details. Finally, preliminary experiments with both tools
show that dual model counting results in shorter execution traces compared to the
ones of its non-dual variant and leads to the detection of short partial models.

This part contains one workshop paper (Chapter 9) and one conference pa-
per (Chapter 11), which are both peer-reviewed. They are discussed separately in
Chapter 10 and Chapter 12, respectively. We have implemented a proof of concept
in SWI-Prolog. Our tool proved valuable in checking our rules and is presented in
Chapter 13. The material in this chapter was not published to date.

part iv : chronological cdcl for model counting . We formalize and
generalize chronological CDCL [149] and provide a formal proof of correctness.
Our calculus is turned into an algorithm establishing the foundation for our im-
plementation of chronological CDCL. Implementation details are discussed, and
experimental results are reported. This framework is then extended to support
exact unweighted model counting. It is devised as an enumeration approach facil-
itating a formal proof of its correctness.

The papers contained in this part (Chapter 14 and Chapter 16) were published
at conferences and are both peer-reviewed. These papers are discussed separately
in Chapter 15 and Chapter 17.

part v : partial model enumeration. We combine the techniques intro-
duced in Part III and Part IV for partial model enumeration. The focus in our first
calculus is on detecting (partial) assignments which logically entail the input for-
mula. We discuss four entailment checks of different strengths and computational
costs. In our second approach, partial models are obtained by shrinking total ones.
We present a calculus for projected model enumeration without repetition and
a relaxed variant admitting repetitions. For both calculi, algorithms and formal
proofs of their correctness are provided.

This part contains one peer-reviewed conference paper (Chapter 18) and an arti-
cle currently under review (Chapter 20). The latter is not an extended version of a
conference paper and hence contains only material which to date is unpublished.
In contrast to Chapter 9, Chapter 11, Chapter 14, Chapter 16, and Chapter 18, we
have already updated several minor issues on-top of the submitted version as
archived in [140]. The conference paper and the submitted article are discussed in
Chapter 19 and Chapter 21, respectively.

part vi : conclusion. The thesis is discussed as a whole and the results of
our papers compared. We provide more background concerning dual reasoning.
After summarizing our contributions to propositional satisfiability, propositional
counting and propositional model enumeration, we conclude by pointing out fu-
ture research directions.

3
C O N T R I B U T I O N S

In this chapter, a short high-level summary of each paper contained in this thesis
is given, and my own contributions to each of them are pointed out.

3.1 paper 1 : an abstract dual propositional model counter

Our first work [24] published at the Second Young Scientist’s International Work-
shop on Trends in Information Processing (YSIP2) 2017, addresses DPLL-based model
counting. We assume the input formula F to be an arbitrary propositional formula
over a set of variables V. However, most modern SAT solvers work on formulae in
conjunctive normal form (CNF), and they implement efficient algorithms tailored
to CNF formulae. To take advantage of those algorithms, we transform F into
a logically equivalent CNF formula P by, e. g., eliminating double negations and
applying the De Morgan’s and distributive laws. Since F and P are logically equiv-
alent, they have the same models and model count. In our counting algorithm, we
follow the main idea introduced by Birnbaum and Lozinskii [27]: the model count
of F equals the sum of the model counts of F after setting a variable v ∈ V to 1
and the model counts of F after setting v to 0.

We present a calculus based on this idea. It is devised as a state transition system
and consists of five rules, one capturing decisions and two for each termination
and chronological backtracking, one applicable to satisfying and one applicable
to falsifying assignments, respectively. In this paper, both total and partial assign-
ments are called interpretations. In chronological backtracking, referred to as naive
backtracking (because it does not take into account the reason of the conflict), the
most recent decision literal is flipped.

Motivated by previous work [72, 93], we then extend our counting algorithm to
work on CNF representations of both the input formula F and its negation ¬F,
which we denote by P and N, similar to positive formula and negative formula,
respectively. We assume both P and N to be defined over the same set of vari-
ables V over which F is defined. This particular condition ensures that whenever
an assignment satisfies P, it falsifies N and vice versa. As explained above, having
both N and P facilitates the detection of partial models of F, since these are ex-
actly the assignments under which a conflict in N occurs. Since variables can be
either true or false, each partial model with n unassigned variables represents 2n

total models. Our DPLL-based model counter takes both P and N as arguments,
processes them simultaneously, and computes the model count of P (and hence
of F) according to this idea. It works on two formulae which are the negation of
each other, hence we call it dual.

11

12 contributions

We restrict our framework to a minimal set of rules, namely decisions, backtrack-
ing and termination. This simplifies the presentation since fewer cases have to be
distinguished and reasoned about. To make sure that the correct model count is re-
turned by our framework, every possible assignment must be tested exactly once.
This is ensured by the simple backtracking mechanism. If our framework is sound,
every implementation which can be modeled by means of it is sound as well. This
comprises optimizations, such as unit propagation, which is not included in our
formalization but can be simulated by a decision and subsequent backtracking.

Finally, we extend both the dual and non-dual calculus by rules capturing unit
propagation in P and (in the dual case) N and demonstrate their function by
means of an example. The trace produced by the dual calculus turns out to be
significantly shorter than the trace of its non-dual version. However, for the latter
a shorter trace is obtained by adopting a different decision heuristic. We imple-
mented our framework in SWI-Prolog [199] making use of the PIE system [198].

The main gain in this work is to save decisions by applying unit propagation
in N. However, it helped to gain a deeper understanding of the dual approach.
To our best knowledge, it is the first dual model counting method. Preliminary
experiments confirmed its suitability for propositional model counting.

my contributions . The main idea is motivated by earlier results [27, 72, 93]
and adapted for propositional model counting in cooperation with Armin Biere.
In the initial brain-storming and discussing phase we were supported by Andreas
Fröhlich. I developed the rules underlying both counting algorithms. The idea to
simulate unit propagation by means of decisions and backtracking goes back to
a discussion with Christoph Wernhard at TU Dresden. I devised first versions of
both the dual and non-dual formal framework and refined them in discussions
with my co-authors Armin Biere and Steffen Hölldobler as well as my colleagues
at TU Dresden, Christoph Wernhard and Tobias Philipp. I drafted the soundness
argument and refined it with Armin Biere. I created the examples and their vari-
ants and elaborated the rules for unit propagation. The SWI-Prolog implementa-
tion is my sole work as well as the preliminary experiments showing the suitabil-
ity of the approach.1 A first draft of the paper was done by me and refined in
cooperation with Armin Biere and Steffen Hölldobler.

3.2 paper 2 : dualizing projected model counting

Our second work [137] published at the IEEE 30th International Conference on Tools
with Artificial Intelligence (ICTAI) 2018, extends the dual approach presented in our
former work by projection capabilities and methods widely used in (non-dual)
state-of-the-art SAT solvers, such as conflict analysis and conflict-driven backjump-
ing. The input formula F is assumed to be an arbitrary propositional formula de-
fined over the set of variables V. We partition V into the set of relevant variables X
and the (possibly empty) set of irrelevant variables Y. Similarly, we can decompose
an assignment into a relevant and an irrelevant part. The models of F projected
onto X then are exactly the relevant parts of the assignments satisfying F.

Without the introduction of fresh variables, but by eliminating double negations
and adopting the De Morgan’s and distributive laws, the CNF transformation
of a formula is exponential in size compared to the original formula. Therefore,
as in the Tseitin transformation [192] and the Plaisted-Greenbaum transforma-

1 Due to space requirements, these experiments are not included in the paper.

3.3 paper 3 : backing backtracking 13

tion [164], new sets of variables S and T are introduced during the transformation
of F and ¬F into CNF formulae P and N, respectively. We call the variables in S
primal variables and the variables in T dual variables. These fresh variables are
irrelevant, and the models of F need be projected onto X.

State-of-the-art SAT solvers use conflict-driven clause learning (CDCL) [127, 128,
146], which extends DPLL with a procedure to analyze conflicts and learn a clause
representing the reason for the conflict. This clause on the one hand prevents
the solver from repeating a bad assignment and on the other hand enables it to
continue the search with a more promising assignment.

Our model counter executes a dual variant of CDCL on P and N. The calculus
describing it consists of rules capturing termination, backtracking, unit propaga-
tion in both P and N, decisions, and the discarding of redundant clauses. Conflicts
are handled by either backtracking chronologically or by executing conflict analy-
sis and subsequent conflict-driven backjumping. Our rules handling the detection
of a (partial) model are presented in two versions. In one, we remember the mod-
els found at the current decision level. This allows us to jump back over branches
in which models were found without the need for blocking clauses by just sub-
tracting the corresponding model count from the number of models found so far.
In the other, we add a blocking clause to P.

We discuss the combination of the different concepts for handling conflicts and
satisfying assignments in the context of dual model counting. To ensure the cor-
rectness of our counting method, we first decide the (relevant) variables in X, fol-
lowed by the (irrelevant) variables in Y and the (primal) variables in S. We never
decide the (dual) variables in T. This decision order guarantees that whenever an
assignment falsifies N, it can be extended to a total model of P and hence of F.

The SWI-Prolog implementation of the previous work was extended accordingly
and proved a valuable tool for checking correctness of the rules. Our new tool Du-
aliza implements the calculus. It takes as input an arbitrary propositional for-
mula, a circuit, or a formula in CNF. Dualiza counts or enumerates models with
or without projection and can also act as a simple SAT solver. We present some
preliminary experimental results and show the orthogonal strength of Dualiza

compared to component-based #SAT solvers.

my contributions . The definition of the new concepts and the framework is
the result of a joint effort of the authors. I extended my SWI-Prolog implementa-
tion of the previous work to accommodate the new rule set. This implementation
was very helpful for checking (and fixing) the rules. My focus was on the theoret-
ical part of this work, and on the writing of the paper.

3.3 paper 3 : backing backtracking

In our paper [138] published at The 22nd International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT) 2019, we formalize and generalize the com-
bination of chronological backtracking with CDCL, also referred to as chronologi-
cal CDCL, introduced by Nadel and Ryvchin [149]. It is motivated by the observa-
tion that after backjumping the assignments just undone might be repeated [188].
In chronological CDCL, backtracking after learning a conflict clause therefore does
not occur to the assertion level but to the decision level preceding the conflict
level, i. e., the decision level at which the conflict occurred, but the literal propa-
gated next is assigned to the assertion level. The idea is to remember the decision

14 contributions

level to which backjumping would occur in standard CDCL with conflict-driven
backjumping without undoing the assignments at higher decision levels. As a con-
sequence, the literals on the trail are not ordered in ascending order with respect to
their decision level anymore, and invariants which to date were considered crucial
to CDCL are invalidated. We identify those invariants and show which invariants
inherent to CDCL still hold in chronological CDCL.

Our calculus is conceived as a state transition system for SAT. Its rules capture
termination, unit propagation, conflict-driven backjumping, and decisions. Unlike
in CDCL with conflict-driven backjumping, in chronological CDCL the conflicting
clause might contain one single literal at conflict level. This literal is a missed prop-
agation literal due to backtracking chronologically after a conflict. An example for
this case is presented and a formal proof of correctness of our calculus provided.

We turn our transition system into an algorithm and provide pseudocode on a
higher abstraction level covering exclusively chronological backtracking. Chrono-
logical backtracking is added to the CDCL-based SAT solver CaDiCaL. We de-
scribe the changes needed to enable chronological backtracking including details
on internal data structures not mentioned by Nadel and Ryvchin [149]. These
changes are similar to the ones described in their paper [149] and implemented in
their solver submitted to the SAT 2018 competition [150].

We evaluate our solver CaDiCaL [19] on the benchmarks from the main track
of the SAT Competition 2018. Our experiments confirm the effectiveness of chrono-
logical backtracking. Performing exclusively chronological backtracking does not
degrade solver performance much and thus, for instance, has potential to be used
in propositional model counting.

my contributions . I proposed to investigate chronological CDCL as soon
as the corresponding paper [149] was accepted at the SAT 2018 conference. My
intuition was that model counting could benefit from the combination of CDCL
and chronological backtracking, since it allows to escape regions of the search
space without models while remaining in the proximity of the region of the search
space currently explored if neither a model has been found nor a conflict has
occurred. The presentation of the concepts resulted from discussions with Armin
Biere. I developed a first draft of the calculus, which was subsequently refined
in many iterations together with Armin Biere. Particularly the rule describing
conflict-driven backjumping turned out to be tricky, and we put considerable effort
into finding a concise formulation. I created the example explaining the effects of
chronological CDCL on the trail and the example for the case where the conflicting
clause contains one single literal at conflict level. The proof of correctness is the
result of joint work with Armin Biere. The writing was mostly done by me, except
for the sections on implementation and experiments.

3.4 paper 4 : combining conflict-driven clause learning and chro-
nological backtracking for propositional model counting

In our previous work, we identified the potential of CDCL with chronological back-
tracking for model counting. Developing a calculus for #SAT based on chronologi-
cal CDCL and providing a formal correctness proof was the goal of our paper [139]
published at the 5th Global Conference on Artificial Intelligence (GCAI) 2019. This
work was also presented at the accompanying poster session.2

2 https://www.sibyllemoehle.net/images/pdf/MoehleBiere-GCAI19-poster.png

https://www.sibyllemoehle.net/images/pdf/MoehleBiere-GCAI19-poster.png

3.5 paper 5 : four flavors of entailment 15

For our counting procedure, we take an enumeration approach, since it facili-
tates the correctness proof as explained next. Suppose our task is to determine the
model count of a propositional formula F. During the execution of our procedure,
it must hold anytime that the sum of the number of models already found and
the number of models not yet detected equals the model count of F. Now only the
first of these three numbers is known, which renders this invariant useless.

Notice that from the trail I representing the current partial assignment we can
read off the search space still to be processed. It can be represented as a disjunction
of the assignments consistent with I not yet tested. We call it the pending search
space of I and denote it by O(I). Similarly, the pending models of I, i. e., the models
consistent with I still to be found, are the models of the formula O(I) ∧ F. Our
procedure returns a disjunction M, whose disjuncts are the found models.

We extend the calculus developed in our previous work [138] to capture the sit-
uation where a model has been found and such that it constructs M as described
above. This extension is not dual. It also uses exclusively chronological backtrack-
ing, and therefore no measures preventing repetitions need be taken. Chronologi-
cal backtracking also ensures that the models it finds are pairwise contradicting.

If our calculus is correct, after its termination M is logically equivalent to F,
and their model counts coincide. Moreover, since its disjuncts are pairwise contra-
dicting, the model count of M is computed by summing up the number of total
assignments represented by its disjuncts. We formally prove that M is logically
equivalent to F. Newly introduced invariants allow us first to precisely character-
ize both the found and pending models and second to show that the union of the
two yields the models of F. Instead of using the invariant describe above, we show
that it holds anytime that M ∨O(I) ∧ F is logically equivalent to F.

my contributions . I gave the incentive to extend the formalization of chro-
nological CDCL for model counting. I proposed to take an enumeration approach
and defined the concepts of pending search space and pending models. The orig-
inal impulse for these concepts resulted from a discussion with Christoph Wern-
hard at TU Dresden a few years earlier. He mentioned that from the current trail
one could describe the search space not yet tested. I came up with a notation for
the pending search space but had no use case for this concept (yet). The concepts I
developed were technically correct; their clarity was improved thanks to feedback
of Armin Biere. I generated the example demonstrating the notions of pending
search space and pending models. I further showed that after flipping the last
decision after a conflict, the pending models remain unaltered. I developed the
calculus and the proofs. Two new invariants improving the proof structure were
introduced in cooperation with Armin Biere. The writing was mostly done by me.
The poster accompanying this paper was my sole work. Armin Biere provided
feedback on a first draft of the poster. For this poster, I won the Bolzano Rules and
Artificial INtelligence Summit (BRAIN) 2019 Best Poster and Interaction Award.3

3.5 paper 5 : four flavors of entailment

The work [141] published at The 23rd International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT) 2020, combines the techniques described in all
our previous papers. Our main motivation was to find partial models to be used
as addends in weighted model integration (WMI) [142, 143]. As their might be

3 https://www.sibyllemoehle.net/images/gcai19certificate.jpg

https://www.sibyllemoehle.net/images/gcai19certificate.jpg

16 contributions

exponentially many models, the goal was to find short partial models in order to
reduce their number. The conference took place virtually, and a video had to be
prepared in place of a live presentation.4.

In our work, we laid the focus on detecting partial assignments which logically
entail the input formula. While every total extension of such an assignment is
a model of the input formula, this need not be the case for this assignment itself.
Consider as an example the formula F = (a∧ b)∨ (a∧¬b) over the set of variables
V = {a, b} and the partial assignment I = a, i. e., the assignment in which a is
set to true. By evaluating F under I, we obtain the formula (b ∨ ¬b) which is
undefined. However, both total extensions of I, namely ab and a¬b, are models
of F. Obviously, (b ∨ ¬b) is valid. But it syntactically differs from true, and the
syntactic satisfiability check performed by modern (All-)SAT solvers can not detect
that F is valid under the partial assignment a.

To ensure the correctness of the integration, repetitions must be avoided. Our
main enumeration engine is therefore based on chronological CDCL, and no block-
ing clauses are needed. Similarly to our previous work, it returns a formula which
is logically equivalent to the input formula. In addition, projection is supported.

The basic idea of our procedure is as follows. Assume that at a certain point
in the search all enforced variables are assigned, no conflict has occurred, and
there are still unassigned variables. A state-of-the-art All-SAT solver now would
take a decision. Instead of taking the decision, we propose to first test whether
the current assignment already entails the input formula. If this is the case, the
enumerator records this assignment and flips the last decision.

The check of the entailment condition under projection is powerful yet computa-
tionally expensive. However, sometimes a less expensive—and less powerful—test
might do the job. We therefore present the entailment test in four flavors of differ-
ent strengths and computational costs, two of which make use of dual reasoning.
Finally, we discuss examples requiring entailment tests of different strengths.

my contributions . The basic idea was developed in cooperation with Rober-
to Sebastiani and worked out by me. Together we refined my drafts of the algo-
rithm and the formalization. The entailment checks are the outcome of discussions
with Roberto Sebastiani and Armin Biere. This work resulted from my research
stay at the University of Trento, from 9th September 2019 to 13th December 2019,
enabled by an AIxIA Income Mobility Grant 2018 offered by the Italian Association
for Artificial Intelligence (AIxIA). The research proposal with which I won one
out of two grants for incoming researchers was written by me. Roberto Sebastiani
provided feedback on my first version. A first draft of the paper was done by me
and refined in cooperation with Roberto Sebastiani and Armin Biere. The video
accompanying the paper is my sole work. Armin Biere and Roberto Sebastiani
provided feedback on its first version.

3.6 paper 6 : on enumerating short projected models

In our work currently under review and available on arXiv [140], partial mod-
els are obtained by shrinking total ones using dual reasoning. As in previous
papers, P and N denote CNF representations of the input formula F and its nega-
tion ¬F, respectively. The idea is to call a second SAT solver on m ∧ N, where m
denotes the (total) model of P we want to shrink. Since m is a counter-model of N,

4 https://www.youtube.com/watch?v=_QBJ3plWt9Y&t=1s

https://www.youtube.com/watch?v=_QBJ3plWt9Y&t=1s

3.6 paper 6 : on enumerating short projected models 17

a conflict is obtained. Conflict analysis returns the part of m participating in the
conflict, which is exactly the part of m needed to satisfy P and therefore constitutes
the shortened model. We are interested in its projection onto the relevant variables,
e. g., for removing from m the auxiliary variables introduced during CNF transfor-
mations. The projected model is then used to determine the backtrack level.

Our enumeration algorithm is based on CDCL with conflict-driven backjump-
ing and is presented in two variants. In the first variant, enumerating models mul-
tiple times is avoided by the use of blocking clauses. By the addition of blocking
clauses, P is altered, and dual model shrinking requires these changes be reflected
in N. In order to meet this requirement, we propose a dual encoding blocking
clause encoding. Importantly, blocking clauses provide the reason for the decision
flipped after finding a model fulfilling the assumption of CDCL that the reason
of every literal which is not a decision literal is contained in the formula. The ad-
dition of blocking clauses therefore ensures a correct functioning of CDCL in the
context of model enumeration without repetitions (and therefore model counting).

In the second variant of our enumeration procedure, we relax the uniqueness
constraint and admit enumerating models multiple times. Due to the absence
of blocking clauses, CDCL fails if a decision flipped after finding a model m is
involved. We fix this issue by annotating this flipped decision ` with ¬m. The
clause ¬m provides the reasons for `, but it is not added to P. Furthermore,
any clause learned during conflict analysis involving ¬m is logically entailed by
P ∧¬m but not necessarily by P, to which it is added. For this reason, ¬m can not
be used for unit propagation.

For both enumeration methods, algorithms, calculi, and formal proofs of their
correctness are provided. We also show their working by examples and sketch the
modifications necessary to obtain a generalization to partial model detection.

We present the definitions of soundness and completeness in the context of
both partial and total model enumeration. These definitions are inspired by the
ones formulated by Christoph Weidenbach [197] in the context of SAT solving.

my contributions . The work presented in this paper was also initiated dur-
ing my research stay in Trento in 2019. The basic idea and the dual blocking clause
encoding was developed in cooperation with Roberto Sebastiani. The generaliza-
tion to model enumerating with repetitions was proposed by Armin Biere and
elaborated by me. The formalizations were done by me, and the idea to annotate
flipped literals in the absence of blocking clauses goes back to a discussion with
Mathias Fleury. The examples and proofs are my sole work. For these proofs, I
developed a mapping from states to lists inspired by Mathias Fleury’s master the-
sis [78]. This mapping turned out to be very useful in proving termination. Math-
ias Fleury also pointed me to Christoph Weidenbach’s definitions of soundness
and completeness. I adapted these definitions to model enumeration and refined
and precised them in discussions with Armin Biere and Roberto Sebastiani. I did
a first draft of the paper. Roberto Sebastiani provided feedback.

4
T O P I C S B E Y O N D T H E S C O P E O F T H I S T H E S I S

The focus in this thesis is on SAT-based exact unweighted model counting and ir-
redundant (partial) model enumeration, i. e., (partial) model enumeration without
repetitions. There are other variants of model counting, which we did not touch
upon. These include weighted model counting and methods exploiting some struc-
tural property of the input formula, approximate model counting, and knowledge
compilation. We also did only consider existing work in preprocessing and inpro-
cessing. In this chapter, we give high-level presentations of these research areas
and show how they are related to this thesis.

4.1 weighted model counting

A Bayesian network can be expressed as a CNF formula K representing a propo-
sitional knowledge base over weighted variables. Reasoning in this network in-
volves summing up the weights of all models of K, possibly given some evidence.
The weight of a model is defined as the product of the weights of its literals,
and the weight of a literal is defined based on the weight of its variable. Weighted
model counting is relevant in artificial intelligence and therefore an active research
field [11, 13, 43, 44, 48, 63, 64, 76, 107, 174].

Unweighted model counting can be considered a special case of weighted model
counting, namely the one in which all literals are assigned the same weight. By
adding weights to the variables of the input formula, our counting (and enumera-
tion) approaches can readily be adapted to support weighted model counting.

4.2 structure-aware model counting

Although SAT is NP-complete, modern SAT solvers are able to solve hard in-
stances stemming from real-world applications. It is assumed that they exploit
a hidden structure in these instances [169]. An interesting question is how this
hidden structure impacts the complexity of model counting algorithms. The struc-
ture of a formula can, for instance, be described by various properties which can
be derived from a graph associated with the input formula, and the structural fea-
tures of industrial benchmarks are studied in several publications [5–7, 130]. The
complexity of #SAT is then discussed for classes of formulae whose associated
graph is subject to some structural restrictions.

Two structural properties of interest are tree-width and clique-width. They are
related, in that a graph having bounded tree-width also has bounded clique-width,
while the converse does not hold in general [50]. It has been shown that if the

19

20 topics beyond the scope of this thesis

tree-width or the (symmetric) clique-width are bounded, then #SAT is solvable in
polynomial time [75–77, 82, 170, 181, 182].

One property which seems to be important in practice is decomposability (see
Chapter 1 and Chapter 6). A formula is decomposable, or can be partitioned into
components, if it can be partitioned into subformulae over pairwise disjoint sets
of variables. Several #SAT solvers are based on this paradigm [15, 172, 179, 189].
Our approaches do not depend on it, since the aim of this thesis was to explore
alternative model counting strategies.

Other structural properties studied in the context of model counting are hyper-
graph, community structure, and centrality [30, 41, 42, 81] as well as symmetry
breaking [194]. The interested reader is referred to Chapter 17, Fixed-Parameter
Tractability, in the Handbook of Satisfiability [171].

4.3 approximate model counting

For some tasks, an approximate model count is sufficient. Examples are probabilis-
tic reasoning [167], probabilistic planning [62], and machine learning [152]. One
approach to approximate model counting consists in sampling (uniformly or non-
uniformly) from the set of models of the considered formula, in order to obtain
an approximation of its model count [86, 102]. A variety of approximate model
counters implement this paradigm, some providing upper and/or lower bounds
with or without guarantees [45, 46, 85, 86, 102, 105, 111, 196].

The set of models can also be roughly cut in half by adding a random XOR
constraint to the formula. By the addition of n XOR constraints the solution space
is partitioned into 2n subsets, and so on. The partitioning is truly random if each
variable occurs with a probability of 50% in these XOR constraints. If after the
addition of n XOR constraints the resulting formula becomes unsatisfiable, we
can conclude that its model count is at least of the order of 2n. Notice that the
error introduced in the approximation depends on the size of the added XOR
constraints, i. e., the shorter the XOR constraints, the greater the error. However,
long XOR constraints are hard to deal with for a #SAT solver, hence there is a
trade-off between precision and feasibility. Several approximate model counters
providing guarantees are based on this idea, some of which in addition provide
lower and upper bounds [1, 68, 87, 88, 183, 205].

There exist other approximate model counters which implement neither of the
two paradigms mentioned above [69, 109, 194]. Like weighted model counting,
approximate model counting is a very active research field. For further details,
we refer the interested reader to Chapter 26, Approximate Model Counting, in the
second edition of the Handbook of Satisfiability [47].

4.4 knowledge compilation

Tackling computationally expensive problems was the motivation for developing
the knowledge compilation (KC) paradigm [39]. Examples are equivalence and
clausal entailment checks or model counting and model enumeration. The idea is
to translate a formula from one language into another in which the task of interest
can be executed in polynomial time [59]. The knowledge compilation map [59]
contains an in-depth discussion of such languages and their properties, and other
(families of) languages have been introduced since its publication [56, 70, 108].

4.4 knowledge compilation 21

In this thesis, we did not consider KC in the first place. However, in our model
counting and enumeration methods based on chronological CDCL [139–141], we
generate a disjoint Sum-of-Products (DSOP) formula, i. e., a DNF whose disjuncts
are pairwise contradicting, which is logically equivalent to the input formula.
The models of a DSOP formula are its disjuncts, and its model count equals the
sum of the number of total assignments represented by them. Therefore, formu-
lae in DSOP support both model enumeration and model counting in polynomial
time. In this sense, our approaches can be considered related to KC. Unlike in the
work by Huang and Darwiche [99, 100], where the translated formula is obtained
by recording the trace of a DPLL execution as a graph, our DSOP formula is gen-
erated by an exhaustive search and combining the (partial) models of the input
formula disjunctively. Due to its relatedness to our work, we give a slightly more
detailed presentation of KC based on the article by Darwiche and Marquis [59].

A propositional formula F over a set of variables V is said to be in Negation
Normal Form (NNF), if it is built from literals with variable in V and the logi-
cal connectives disjunction (∨) and conjunction (∧) [123]. If in addition the con-
juncts of each conjunction are defined over disjoint sets of variables, the formula F
is said to be in Decomposable Negation Normal Form (DNNF) [51, 52]. This decom-
posability property is essential for the component-based model counting approach
presented in Chapter 6 and Example 6.3. The Disjunctive Normal Form (DNF),
which is a disjunction of cubes which are conjunctions of literals, meets the de-
composability property and is a subset of DNNF [51, 52], while the Conjunctive
Normal Form CNF, which is a conjunction of clauses which are disjunctions of
literals, is a subset of NNF. Each NNF formula can be represented as a rooted, di-
rected acyclic graph (DAG), in which a leaf node represents either a literal or a truth
value and in which all internal nodes and the root node are label with either ∨
or ∧. Both CNF and DNF meet the flatness property: the corresponding DAG
has height at most two. Following the definition in the knowledge compilation
map [59], the language CNF satisfies the simple-disjunction property saying that
the literals in each clause are leafs sharing no variable, whereas the language DNF
meets the simple-conjunction property, i. e., the literals in each cube are leaves shar-
ing no variable. These properties in particular forbid tautologies, i. e., disjunctions
of the form (v ∨ ¬v), and contradictions, i. e., conjunctions of the form (v ∧ ¬v),
where v ∈ V. The terminology is clarified by a basic example.

Example 4.1 (Negation Normal Forms). We consider the set of propositional variables
V = {a, b, c, d} and two formulae F and G defined over the variables in V. The formula
F = C1 ∧C2 = (a∨ b∨ c)∧ (¬a∨ d) defined over V is in NNF: it is composed of literals
and the logical connectives conjunction and disjunction. However, it is not in DNNF, since
var(C1) ∩ var(C2) = {a} 6= ∅. It meets the simple-disjunction property, and its DAG
representation, depicted on the left hand side in Figure 4.1, has height two. Therefore, the
formula F is in CNF. Similarly, the formula G = D1 ∨D2 = (a∧ b)∨ (c∧ d) is in NNF.
Since the conjuncts in both D1 and D2 are defined over different sets of variables, i. e.,
var(a)∩ var(b) = ∅ and var(c)∩ var(d) = ∅, it is also in DNNF. Furthermore, it meets
the simple-conjunction property and its DAG representation, visualized on the right hand
side in Figure 4.1, has height two. Therefore, the formula G is in DNF.

A formula in which the disjuncts of each disjunction are pairwise contradict-
ing, is said to be deterministic, and if all disjuncts contain the same variables, it
is said to be smooth [53]. Formulae in NNF satisfying both decomposability and
determinism are in deterministic Decomposable Normal Form (d-DNNF). A formula

22 topics beyond the scope of this thesis

∧

∨

a b c

∨

¬a d

F = (a ∨ b ∨ c) ∧ (¬a ∨ d)

∨

∧

a b

∧

c d

G = (a ∧ b) ∨ (c ∧ d)

Figure 4.1: DAG representation of CNF (left hand side) and DNF (right hand side).

in DNF which is deterministic and smooth is in the language MODS. Its disjuncts
are exactly its total models, and the number of its disjuncts equals its model count.
In contrast, the language DSOP mentioned above is deterministic but need not be
smooth, which makes it a suitable target language for the approaches developed in
this thesis. In fact, its cubes are possibly partial satisfying assignments and there-
fore allow for a more compact representation of a formula compared to MODS.
Both MODS and DSOP support model counting and irredundant model enumer-
ation in polynomial time. The relation between determinism and smoothness and
the model count of a formula is explained by means of an example.

Example 4.2 (Determinism, smoothness, and model count). Consider the DNF for-
mula F = (a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (¬a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c) defined over the set
of propositional variables V = {a, b, c}. The formula F is deterministic and smooth. In
fact, its disjuncts are pairwise contradicting and each disjunct contains all variables, and
therefore F is in the language MODS. Its total models are exactly the total assignments rep-
resented by each disjunct, hence models(F) = {abc, ab¬c,¬a¬bc,¬abc}, and #F = 4.
The DNF formula G = (a∧ b)∨ (¬a∧ c) defined over V is deterministic but not smooth,
and G is in DSOP. Each of its disjuncts represents a set of two total models of G, and
due to the determinism property, these sets are disjoint. The total models of G are given
by models(G) = {abc, ab¬c,¬a¬bc,¬abc} = models(F). The formulae F and G are
logically equivalent but G containing two cubes and four literals is more compact than F,
which consists of four cubes and 12 literals.

The trace of an exhaustive DPLL search represents a DAG and can be consid-
ered the compilation of a formula from CNF into d-DNNF [99, 100]. This is sim-
ilarly the case for the traces of dynamic programming algorithms for #SAT [31].
There are other languages of interest in the context of model counting or model
enumeration, which are not relevant in this thesis. The aim of this paragraph is to
provide pointers to further information. The language Decision-DNNF is defined
similarly to d-DNNF but with so-called decision nodes in place of the determin-
istic disjunction nodes [114, 159]. A decision node is a disjunction node whose
disjuncts are of the form v ∧ α and ¬v ∧ β, where v is a variable and α and β are
subgraphs representing subformulae. Other languages are Sentential Decision Di-
agrams (SDD) [56], which are a subset of Decision-DNNFs, and (Extended) Affine
Decision Trees (EADT) [108]. Finally, there exist structured versions of DNNF and d-
DNNF [163]. Due to its relevance in many research areas and tasks, including
proof systems and reasoning, as well as applications in artificial intelligence, such
as multi-agent path finding and planning, research in KC is active for more than
two decades [3, 16, 31, 39–41, 59, 79, 121, 162, 163, 175, 178], and a variety of knowl-
edge compilers are available [53–55, 108, 114, 117, 147, 148, 159–161, 186, 191].

4.5 preprocessing and inprocessing 23

4.5 preprocessing and inprocessing

Both preprocessing and inprocessing are powerful tools and are extensively used
in SAT solving [14, 25, 49, 66, 71, 133, 151, 158]. Some of these methods are only
satisfiability-preserving, i. e., they do not transform a satisfiable formula into an
unsatisfiable one and vice versa. But they are not equivalence-preserving, i. e., they
alter the models and usually also the model count of the processed formula. Conse-
quently, in All-SAT and #SAT, only equivalence-preserving pre- and inprocessing
techniques must be used. Due to the hardness of All-SAT and #SAT, more expen-
sive techniques might pay off. In our implementations, we fell back on existing
work on preprocessing for model counting [113, 115].

Part II

B A C K G R O U N D

5
P R O P O S I T I O N A L S AT I S F I A B I L I T Y

Let V be a set of propositional variables. These are variables interpreted over the
Boolean constants B = {0, 1}. As common in the literature, 0 denotes false, and 1
denotes true. A literal ` is a variable v ∈ V or its negation ¬v. Its variable is ob-
tained by var(`) = v, if ` = v or ` = ¬v. A propositional formula F(V) defined over V
is composed of the truth values 0 and 1, literals with variable in V, the negation
operator (¬), and the logical connectives conjunction (∧), disjunction (∨), implica-
tion (→), and equivalence (↔). We also might write F as a shortcut for F(V).

A total assignment σ : V 7→ B maps the variables in V to the truth values 0 and 1.
It can be applied to F to yield its truth value σ(F) ∈ B, also referred to as the truth
value of F under σ. The satisfiability problem of propositional logic, or SAT, is the task
of determining whether there exists an assignment σ to the variables in V such
that F evaluates to 1 under this assignment. If σ(F) = 1, we say that σ satisfies F,
or that F is satisfiable, and call σ a model of F. If instead σ(F) = 0, we say that σ
falsifies F and call σ a counter-model of F. If σ(F) = 0 for all possible assignments σ,
we say that F is unsatisfiable.

Example 5.1 (Propositional formula and satisfiability). Let F = (a ∧ c) ∨ (b ∧ d) be
a propositional formula over the set of variables V = {a, b, c, d}. The total assignment
σ = {a 7→ 1, b 7→ 0, c 7→ 1, d 7→ 1} is a model of F. There are others, but for showing
that F is satisfiable, providing one model is sufficient.

Modern SAT solvers mostly work on formulae in conjunctive normal form (CNF).
In propositional logic, a CNF formula is a conjunction of clauses, which are dis-
junctions of literals. In principle, a CNF representation of F can be obtained by
eliminating double negations and applying the distributive and De Morgan’s law.
However, this method might lead to a substantial growth of F.

To avoid this blowup, a CNF representation of F can be computed by means
of either the Tseitin transformation [192] or the Plaisted-Greenbaum transforma-
tion [164]. Both transformations are satisfiability-preserving: if F is (un-)satisfiable,
its CNF transformation is (un-)satisfiable as well, which is sufficient in the context
of SAT solving. Both the Tseitin and the Plaisted-Greenbaum transformation in-
troduce fresh variables, called Tseitin variables in the former, for the subformulae
of F, and the increase in size of F is at most polynomial in both methods. Next,
we explain the working of the Tseitin transformation by an example.

Example 5.2 (Tseitin transformation). Consider again Example 5.1. The subformulae
of F = (a∧ c)∨ (b∧ d) are (a ∧ c), (b ∧ d), and (a∧ c)∨ (b∧ d) = F. Each of these sub-
formulae is represented by a fresh variable. We introduce the Tseitin variables t1, t2, and t3,
which are defined as follows: t1 ↔ a ∧ c, t2 ↔ b ∧ d, and t3 ↔ t1 ∨ t2. These definitions

27

28 propositional satisfiability

are transformed into CNF and combined conjunctively yielding an equisatisfiable CNF
representation of F:

tseitin(F)
def
= (t1 ↔ a ∧ c) ∧ (t2 ↔ b ∧ d) ∧ (t3 ↔ t1 ∨ t2)

≡ (¬t1 ∨ a) ∧ (¬t1 ∨ c) ∧ (t1 ∨ ¬a ∨ ¬c) ∧
(¬t2 ∨ b) ∧ (¬t2 ∨ d) ∧ (t2 ∨ ¬b ∨ ¬d) ∧
(¬t3 ∨ t1 ∨ t2) ∧ (t3 ∨ ¬t1) ∧ (t3 ∨ ¬t2).

We base the methods we are going to develop in this thesis on the follow-
ing two SAT solving methods: the Davis-Putnam-Logemann-Loveland (DPLL) algo-
rithm [60] and conflict-driven clause learning (CDCL) [127, 128]. In the following, we
present the core of these methods and provide examples.

The DPLL algorithm is a backtracking-based search algorithm. It is defined re-
cursively, but DPLL-based SAT solvers implement an iterative variant in order to
avoid stack overflows. They keep track of the variable assignments and the order in
which they occurred by maintaining a trail, which we denote by I = `1 . . . `n. This
trail is a sequence of literals with mutually exclusive variable (var(`i) 6= var(`j)
for i 6= j) and represents a (partial) assignment, i. e., an assignment in which not
all variables may occur. Trails and literals can be concatenated, written I J and I `,
provided var(I) ∩ var(J) = ∅ and var(I) ∩ var(`) = ∅. We denote with V − I the
unassigned variables in V, i. e., V − I = V \ var(I).

The residual of F under the trail I, denoted by F|I , is obtained by replacing the
literals in F occurring on I by 1 and their negation by 0. The residual is defined
similarly for clauses and literals. If F is in CNF, its residual under I is obtained
by removing from F all clauses containing some ` ∈ I and removing from the
remaining clauses all occurrences of ¬`. A clause in which all literals are assigned
the value 0 is called empty clause. Similarly, a formula in CNF from which all
clauses have been removed is called empty formula. We denote the empty clause
by 0 (false) and the empty CNF formula by 1 (true).

In line with the focus of this thesis, which is formalization, we present the DPLL
algorithm as a state transition system with transition relation ;DPLL. Non-terminal
states are represented by the pair (F, I), where F denotes a propositional formula
in CNF defined over a set of variables V, and I represents a trail over V. The ini-
tial state is (F, ε), where ε denotes the empty trail. The terminal state is either SAT
or UNSAT, depending on whether F is determined to be satisfiable or unsatisfiable.
The transition relation ;DPLL is the union of transition relations ;R, where R is
either DPLLU, DPLLD, DPLLB, DPLLE0, or DPLLE1. The rules describing the core
of DPLL are depicted in Figure 5.1. They address unit propagation (rule name suf-
fix U), decisions (D), chronological backtracking (B), and termination either with a
counter-model (E0) or with a model (E1). In the following paragraphs, we provide
a high-level description of our DPLL framework and introduce related concepts
and notation used throughout this thesis.

A DPLL-based SAT solver executes the following steps until either a satisfying
assignment is found or F is determined to be unsatisfiable. It computes the resid-
ual of F under I. If there exists a clause C ∈ F in which all literals but one are
assigned the value 0, i. e., C|I = (`), the literal ` is assigned the value 1, since
this is the only way to extend I to a model of F, if possible at all. This is the unit
propagation rule (DPLLU), and (`) and ` are called unit clause and unit literal, respec-
tively. We refer to ` as a propagation literal saying that it was propagated and call C

propositional satisfiability 29

DPLLU: (F, I) ;DPLLU (F, I `C) if exists C ∈ F with (`) = C|I

DPLLD: (F, I) ;DPLLD (F, I `d) if F|I 6= 0 and units(F|I) = ∅ and

var(`) ∈ V − I

DPLLB: (F, I) ;DPLLB (F, J `) if exists C ∈ F with J `d K def
= I and

C|I = 0 and decs(K) = ∅

DPLLE0: (F, I) ;DPLLE0 UNSAT if exists C ∈ F with C|I = 0 and

decs(I) = ∅

DPLLE1: (F, I) ;DPLLE1 SAT if F|I = 1

Figure 5.1: DPLL rules.

the reason of `. Propagated literals are annotated by their reason,1 e. g., `C, and by
units(F) and units(F|I), the sets of the unit literals in F and F|I are obtained.

If F|I contains no unit clause and not all variables are assigned, an unassigned
variable v ∈ V is chosen and assigned a value according to some heuristic. This
is the decision rule (rule DPLLD), and the literal ` with var(`) = v is called decision
literal or simply decision. We mark the decision literals on I by a superscript, i. e., `d,
and the set consisting of the decision literals on I is given by decs(I) = {` | `d ∈ I}.
The DPLLD rule is applicable only if I does not already falsify F, since this case is
dealt with in rules DPLLB and DPLLE0 presented next.

If there exists a clause C ∈ F such that C|I = 0, also F|I = 0. We say that
a conflict (in F) has occurred and call C the conflicting clause. If I contains some
decision literal, not all assignments have been checked yet. The solver backtracks
chronologically, i. e., it undoes all assignments after the most recent decision `d and
flips ` by assigning it its complement ` = ¬` (rule DPLLB). If I contains no decision
literal, all assignments have been tested, the formula F is unsatisfiable, and the
solver terminates in state UNSAT (rule DPLLE0).

If F|I = 1, the trail I is a model of F. If not all variables occur in I, it is
called a partial model. Since F is found to be satisfiable, the search terminates
in state SAT (rule DPLLE1). Usually SAT solvers refrain from carrying out satis-
fiability checks but know to have found a model if all variables are assigned and
no conflict occurred. This behavior is not reflected in our rules. We explain the
working of our DPLL framework on an example pointing out its main drawback.

Example 5.3 (DPLL search). Let F = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 = (a ∨ b ∨ c) ∧
(a ∨ ¬b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ b ∨ ¬c) ∧ (b ∨ c) ∧ (¬b ∨ c) be a formula over
the set of variables V = {a, b, c}. The execution steps are listed in Table 5.1. Suppose a
is assigned the value 1 by a decision (step 1), followed by deciding ¬c, i. e., assigning c
the value 0 (step 2). The residual of F under the trail I = ad¬cd is F|I = (b) ∧ (¬b).
Propagating b with reason C5 (step 3) results in clause C6 becoming empty, and the solver
backtracks. The last decision on the trail, ¬cd, is flipped (step 4) followed by propagat-
ing b with reason C4 (step 5). Again, a conflict is reached (C3 becomes empty), and the

1 Annotating propagated literals is not needed in DPLL, but it enhances traceability of the example.

30 propositional satisfiability

Table 5.1: DPLL execution trace for Example 5.3.

step rule I F|I

0 ε F
1 DPLLD ad (¬b ∨ ¬c) ∧ (b ∨ ¬c) ∧ (b ∨ c) ∧ (¬b ∨ c)
2 DPLLD ad¬cd (b) ∧ (¬b)
3 DPLLU ad¬cd bC5 0

4 DPLLB ad c (¬b) ∧ (b)
5 DPLLU ad cbC4 0

6 DPLLB ¬a (b ∨ c) ∧ (¬b ∨ c) ∧ (b ∨ c) ∧ (¬b ∨ c)
7 DPLLD ¬a¬cd (b) ∧ (¬b) ∧ (b) ∧ (¬b)
8 DPLLU ¬a¬cd bC5 0∧ 0

9 DPLLB ¬ac 1

10 DPLLE1 ¬ac 1

only remaining decision literal, ad, is flipped (step 6). The resulting residual of F under I
contains no unit, and decision ¬cd is taken (step 7), followed by propagating b with rea-
son C5 (step 8), after which C2 and C6 become empty. After flipping the most recent and
only decision on the trail, ¬cd, the model ¬ac is found (step 9). All assignments have been
tested, and the search terminates in state SAT (step 10).

While in our DPLL framework the most recent decision is always involved in
the conflict, it might be the case that many decisions taken previously are not. Con-
cretely, no model can be found no matter how these decision literals are assigned,
and—even more interestingly—the same conflict would have been obtained if
these decisions would not have been taken at all. The SAT solver could have back-
tracked earlier saving a potentially large amount of work. A DPLL-based SAT
solver can not determine this fact. Instead it flips all decision literals in their re-
verse assignment order one by one, which in particular includes the decision liter-
als not involved in the conflict. We say that the SAT solver can not escape regions of
the search space without satisfying assignments early.

This has become evident already in our small Example 5.3. The decision lit-
eral ad did not participate in the conflict occurred after propagating b in step 3:
the conflicting clause is C6, which does not contain ¬a. If we would have taken
the decision ¬cd in step 1, we would have obtained the same conflict at step 2

instead of 3, and after backtracking, I would have been c instead of ad c.
Avoiding checking assignments which are known to lead to conflicts is the aim

of conflict-driven clause learning (CDCL). It allows to undo not only the most
recent but multiple decisions and the resulting propagations in one step, referred
to as non-chronological backtracking or (conflict-driven) backjumping and provides the
basis for most modern SAT solvers. In CDCL with non-chronological backtracking,
the trail is partitioned into subsequences of literals between decisions in which
all literals have the same decision level. Each subsequence starts with a decision
literal and extends until the last literal before the next decision. Literals assigned
before any decision may form an additional subsequence at decision level zero.
The first decision and the resulting propagation literals are assigned decision level
one, and so on. Backjumping always occurs right before a decision literal.

propositional satisfiability 31

CDCLU: (F, I) ;CDCLU (F, I `C) if exists C ∈ F with (`) = C|I

CDCLD: (F, I) ;CDCLD (F, I `d) if F|I 6= 0 and units(F|I) = ∅ and

var(`) ∈ V − I

CDCLJ: (F, I) ;CDCLJ (F ∧ D, J `D) if exists C ∈ F with

J K def
= I and C|I = 0 and (`) = D|J and `|K = 0 and F |= D

CDCLE0: (F, I) ;CDCLE0 UNSAT if exists C ∈ F with C|I = 0 and

decs(I) = ∅

CDCLE1: (F, I) ;CDCLE1 SAT if F|I = 1

Figure 5.2: CDCL rules.

We present CDCL as a state transition system with transition relation ;CDCL.
Like in our DPLL framework, non-terminal states are represented by pairs (F, I)
with F and I denoting a propositional formula and a trail over the variables V.
The initial state is given by (F, ε), and the terminal states are SAT and UNSAT.
The transition relation ;CDCL is the union of transition relations ;R, where R is
either CDCLU, CDCLD, CDCLJ, CDCLE0, or CDCLE1. The rules describing CDCL
are listed in Figure 5.2. As in our DPLL framework, the name suffixes denote unit
propagation (U), decisions (D), termination with counter-model (E0), and termi-
nation with model (E1). The suffix J refers to backjumping and the correspond-
ing rule CDCLJ replaces the rule DPLLB in our DPLL calculus. The notions in-
troduced for DPLL apply to CDCL too, and the rules CDCLU, CDCLD, CDCLE0,
and CDCLE1 are identical to their counterparts in the DPLL framework. We there-
fore concentrate our presentation on rule CDCLJ.

Suppose the current trail is I, and there exists a clause C ∈ F such that C|I = 0.
The idea of CDCL is to analyze the conflict and to determine a conflict clause2 D rep-
resenting the reason of the conflict. By being learnt, i. e., added to F, the clause D
prevents the solver from repeating this falsifying assignment.3 Furthermore, it can
be used to steer the solver away from the region of the search space containing
no solution. This is achieved by backtracking to the assertion level al, which is the
second greatest decision level of the literals in D. It is also the smallest decision
level on I at which D becomes unit: while D|I = 0, we have D|J = (`), where J
is the subsequence of I consisting of all literals at decision levels smaller or equal
to al and ` is the literal in D with the greatest decision level. If the solver would
backtrack to a decision level smaller than al, the clause D would not become unit.
Backtracking to the assertion level might result in unassigning literals at multiple
decision levels, hence it is also called non-chronological backtracking or backjumping.
We sometimes also speak of conflict-driven backjumping. To compare CDCL with
conflict-driven backjumping with DPLL, we show its working on Example 5.3.

2 not to be confounded with the conflicting clause introduced previously, which is the clause whose
literals are all assigned 0 in a conflict

3 as long as D is not deleted from F, as will be explained further down

32 propositional satisfiability

Table 5.2: CDCL execution for Example 5.4.

step rule I F|I learnt

0 ε F
1 CDCLD ad (¬b ∨ ¬c) ∧ (b ∨ ¬c) ∧ (b ∨ c) ∧ (¬b ∨ c)
2 CDCLD ad¬cd (b) ∧ (¬b)
3 CDCLU ad¬cd bC5 0

4 CDCLJ cD (¬a ∨ ¬b) ∧ (¬a ∨ b) D def
= (c)

5 CDCLD cD¬ad 1 D def
= (c)

6 CDCLE1 cD¬ad 1 D def
= (c)

Example 5.4 (CDCL search). Consider again Example 5.3, where the propositional for-
mula F = C1 ∧C2 ∧C3 ∧C4 ∧C5 ∧C6 = (a∨ b∨ c)∧ (a∨¬b∨ c)∧ (¬a∨¬b∨¬c)∧
(¬a ∨ b ∨ ¬c) ∧ (b ∨ c) ∧ (¬b ∨ c) is defined over the set of variables V = {a, b, c, d}.
The execution steps are listed in Table 5.2. Steps 1 to 3 are identical to steps 1 to 3 in
Example 5.3. Unlike in DPLL, the conflict obtained in step 3 is analyzed. Suppose, con-
flict analysis returns the conflict clause D = (c). The assertion level of a unit clause is
zero per definition, and after adding D to F, the solver jumps back to decision level zero
by unassigning all variables except the ones propagated at decision level zero (which in
our example did not occur). After backjumping, the unit literal c is propagated at decision
level zero with reason D (step 4). The decision ¬ad is taken (step 5), and F evaluates to 1
under the current assignment. The solver terminates in state SAT (step 6). In total, 6 steps
are required to show the satisfiability of F, in contrast to DPLL requiring 10 steps.

Conflict analysis is an important ingredient in CDCL. In essence, the conflicting
clause is resolved with the reason of one of its literals. This procedure is repeated
with the reason of one literal in the resolvent, and so on, until the resolvent D
contains one single literal at conflict level, i. e., the decision level at which the con-
flict occurred, which in CDCL with non-chronological backtracking is the greatest
decision level on the trail I. The resolution mechanism ensures that the clause D
is entailed by F. From a practical point of view, this means that conflict clauses
can be learnt, i. e., added to F, and that they can also be removed anytime to,
e. g., control the size of F. Learning conflict clauses is a prerequisite for conflict-
driven backjumping. For this thesis, it is important to remember that the conflict
clause D does not only preserve the satisfiability of F but also its models and
hence its model count. We will examine the conflict analysis procedure in more
detail in Chapter 20, where we adapt it to propositional model enumeration. A
more detailed discussion of DPLL and CDCL can be found in Chapters 3 and 4 of
the second edition of the Handbook of Satisfiability [58, 126].

6
S AT- B A S E D E X A C T U N W E I G H T E D M O D E L C O U N T I N G

Let F be a propositional formula defined over the set of variables V. Propositional
model counting, or #SAT, is the task of determining the number of total models of F.
In these models, all variables in V are assigned, in contrast to a partial model m, in
which some variables do not occur. A total assignment obtained by assigning those
variables arbitrarily is a total extension of m. Every variable can be assigned either 1
or 0, and hence there exist 2|V−var(m)| total extensions of m, where |V − var(m)|
denotes the number of unassigned variables in m. A partial model therefore allows
to compactly represent multiple total models, as shown in the following example.
We denote with models(F) and models(m) the set of all total models of F and the
set of all total extensions of m, respectively, and with #F and #m their count.

Example 6.1 (Partial models and model count). Consider again Example 5.1, where
F = (a ∧ c) ∨ (b ∧ d) and V = {a, b, c, d}. It has partial models m1 = ac and m2 = bd.
In both, two variables are unassigned, and m1 and m2 represent four total models each. The
total models represented by m1 are models(m1) = {abcd, abc¬d, a¬bcd, a¬bc¬d},
and the ones represented by m2 are models(m2) = {abcd, ab¬cd,¬abcd,¬ab¬cd}.
The model abcd is represented by both m1 and m2, and #F = 7.

As mentioned in Chapter 5, SAT solvers usually work on formulae in CNF. The
same applies to most #SAT solvers, and we are interested in CNF transformation
methods which preserve the model count. It turns out that for the Tseitin transfor-
mation this is the case, as argued by means of the following example.

Example 6.2 (Model count of Tseitin transformation). Consider again the formula
F = (a ∧ c) ∨ (b ∧ d) defined over the set of variables V = {a, b, c, d} shown in Exam-
ple 5.1 and its Tseitin transformation tseitin(F) = (¬t1 ∨ a) ∧ (¬t1 ∨ c) ∧ (t1 ∨ ¬a ∨
¬c)∧ (¬t2 ∨ b)∧ (¬t2 ∨ d)∧ (t2 ∨¬b∨¬d)∧ (¬t3 ∨ t1 ∨ t2)∧ (t3 ∨¬t1)∧ (t3 ∨¬t2)
with Tseitin variables T = {t1, t2, t3} introduced in Example 5.2. We saw that the assign-
ment σ = {a 7→ 1, b 7→ 0, c 7→ 1, d 7→ 1} satisfies F. To extend it to an assignment τ
satisfying tseitin(F), we set the Tseitin variables t1, t2, and t3 to the values matching
their definition, i. e., t1 ↔ a ∧ c, t2 ↔ b ∧ d, and t3 ↔ t1 ∨ t2. The resulting assign-
ment is τ = {a 7→ 1, b 7→ 0, c 7→ 1, d 7→ 1, t1 7→ 1, t2 7→ 0, t3 7→ 1}, which is a model
of tseitin(F). The values of the Tseitin variables are uniquely determined by their defini-
tion. Therefore, τ is the only total extension of σ satisfying tseitin(F), and whenever the
value of a Tseitin variable does not match its definition, the resulting assignment falsi-
fies tseitin(F). Hence, the Tseitin transformation preserves the model count of F.

Most state-of-the-art #SAT solvers implement a component-based approach. The
idea is to split the formula under consideration into subformulae, called compo-
nents, with pairwise disjoint variable sets. These subformulae are then processed

33

34 sat-based exact unweighted model counting

independently and their model counts multiplied to yield the model count of the
original formula. The following example shows the working of this method.

Example 6.3 (Component-based model counting). Suppose the task is to count the
models of the CNF formula F = C1 ∧ C2 ∧ C3 = (a ∨ b) ∧ (a ∨ c) ∧ (d ∨ e) over the
set of variables V = {a, b, c, d, e}. Now, var(C1 ∧ C2) = {a, b, c} and var(C2) = {d, e},
and in particular var(C1 ∧ C2) ∩ var(C2) = ∅, hence F can be partitioned into two
components C1 = C1 ∧C2 and C2 = C3, and F = C1 ∧ C2. The set of variables over which
a component is defined, is restricted to the variables occurring in its clauses, i. e., we have
var(C1) = {a, b, c} and var(C2) = {d, e}. The models of C1 are a and ¬abc, and the
model count of C1 is #C1 = 5. The models of C2 are d and ¬de, and #C2 = 3. The models
of F are ae, ¬abce, ad¬e, and ¬abcd¬e, and #F = 15 = #C1 · #C2.

Each component might be defined over a potentially small subset of the original
set of variables, and the search space to be processed in each computation might
be significantly reduced. In addition, if a component is determined to be unsatis-
fiable, the original formula is unsatisfiable as well, and the model counter can im-
mediately return model count zero [15]. This approach was proposed by Bayardo
and Pehoushek [15] as an extension of the DPLL-based model counting method
introduced by Birnbaum and Lozinskii [27]. Improvements focused on data struc-
tures, such as component caches [12, 172, 179, 189], and algorithms, e. g., for unit
propagation and clause learning [173, 189]. Since the components are processed
separately, this method is suited for parallel and distributed programming [37, 38].

In Example 6.3, we did not touch upon how the model count of a component is
computed. Considering the success of CDCL with conflict-directed backjumping
in SAT solving, it would be obvious to use it as a basis for SAT-based model count-
ing. Only minor modifications seem necessary: whenever a model has been found,
the most recent decision on the trail is flipped and the search continued until no
decisions are left on the trail, similarly to the approach proposed by Birnbaum and
Lozinskii [27]. However, CDCL-based model counters might find models multiple
times, as is demonstrated by a simple example.

Example 6.4 (Multiple model counts in CDCL-based #SAT solvers). Consider the
formula F = C1 ∧ C2 ∧ C3 = (¬a ∨ b) ∧ (c ∨ d) ∧ (c ∨ ¬d), which is defined over the
set of variables V = {a, b, c, d}, and let M be a variable keeping track of the number
of models found and initialized with zero. Assume our CDCL-based model counter first
decides a, followed by propagating b with reason C1 and deciding c. The resulting trail
I = ad bC1 cd satisfies F. It represents two total models, since the variable d does not occur
in it, and M = 2. The most recent decision, cd, is flipped. The trail now is I = ad bC1¬c,
and F|I = (d) ∧ (¬d) contains two unit clauses. After propagating d with reason C2, a
conflict is obtained, since C3 becomes empty. The conflict is analyzed, i. e., the conflicting
clause C3 is resolved with the reason of d, C2, obtaining D = (c), which is added to F.
Since D is unit, the assertion level is zero, and the #SAT solver jumps to decision level zero,
at which no literals were propagated. All assignments are undone, and the unit literal c
is propagated with reason D. The trail now is I = cD, and F|I = (¬a ∨ b) contains no
unit literal. After deciding again a followed by propagating b with reason C1, we have
I = cDad bC1 , which is the partial model found earlier. The model count M is increased by
two, and the model count returned eventually will be erroneous.

This problem does not occur in DPLL-based #SAT solvers, since backtracking
explores the search space in a depth-first manner both when finding conflicts and
identifying models. The detected (counter-)models are pairwise contradicting, and

sat-based exact unweighted model counting 35

#DPLLU: (F, I, M) ;#DPLLU (F, I `C, M) if exists C ∈ F with (`) = C|I

#DPLLD: (F, I, M) ;#DPLLD (F, I `d, M) if F|I 6= 0 and

units(F|I) = ∅ and var(`) ∈ V − I

#DPLLB0: (F, I, M) ;#DPLLB0 (F, J `, M) if exists C ∈ F with

J `d K def
= I and C|I = 0 and decs(K) = ∅

#DPLLB1: (F, I, M) ;#DPLLB1 (F, J `, M + 2|V−I|) if F|I = 1 and

J `d K def
= I and decs(K) = ∅

#DPLLE0: (F, I, M) ;#DPLLE0 M if exists C ∈ F with C|I = 0 and

decs(I) = ∅

#DPLLE1: (F, I, M) ;#DPLLE1 M + 2|V−I| if F|I = 1 and decs(I) = ∅

Figure 6.1: #DPLL rules.

the (partial) models identified during the search represent pairwise disjoint sets of
total models. Therefore, most component-based #SAT solvers are based on DPLL.

The fact that chronological backtracking prevents finding models multiple times
is crucial in this thesis, obviously for model counting but also for model enu-
meration. We therefore present a formalization of the core of the DPLL-based
model counting method introduced by Birnbaum and Lozinskii [27]. Unlike their
algorithm, which is defined recursively, we present an iterative version based on
our DPLL calculus shown in Figure 5.1. Non-terminal states are represented by
tuples (F, I, M), where F and I represent a propositional formula in CNF defined
over a set of variables V and a trail with variables in V, respectively. The third
element, M, is an integer denoting the number of models found so far. The ini-
tial state is (F, ε, 0), where ε denotes the empty trail. The end state is M. The
transition relation ;#DPLL is the union of transition relations ;R, where R is ei-
ther #DPLLU, #DPLLD, #DPLLB0, #DPLLB1, #DPLLE0, or #DPLLE1. The rules of
our #DPLL calculus are listed in Figure 6.1. They capture unit propagation (suf-
fix U), decisions (D), backtracking after a conflict (B0) and after a model (B1) and
termination with a conflict (E0) and with a model (E1).

The rules #DPLLU, #DPLLD, #DPLLB0, and #DPLLE0 differ from their counter-
parts in the DPLL framework only in M. Contrarily to DPLLE1, rule #DPLLE1 is
applicable only if the trail I contains no decision literal, indicating that all assign-
ments have been checked. Otherwise, the model counter backtracks chronologi-
cally (rule #DPLLB1). Whenever the trail I is a (partial) model of F, the number of
total models represented by I is added to M, otherwise M remains unaltered. The
working of our #DPLL framework is shown by an example.

Example 6.5 (DPLL-based model counting). Consider again Example 6.3, where F =
C1 ∧ C2 ∧ C3 = (a ∨ b) ∧ (a ∨ c) ∧ (d ∨ e) and V = {a, b, c, d, e}. The execution steps
are listed in Table 6.1. After deciding a (step 1) and d (step 2), a first model m1 = ad

36 sat-based exact unweighted model counting

Table 6.1: #DPLL execution for Example 6.5.

step rule I F|I M

0 ε (a ∨ b) ∧ (a ∨ c) ∧ (d ∨ e) 0

1 #DPLLD ad (d ∨ e) 0

2 #DPLLD ad dd 1 0

3 #DPLLB1 ad¬d (e) 8

4 #DPLLU ad¬deC3 1 8

5 #DPLLB1 ¬a (b) ∧ (c) ∧ (d ∨ e) 12

6 #DPLLU ¬abC1 (c) ∧ (d ∨ e) 12

7 #DPLLU ¬abC1 cC2 (d ∨ e) 12

8 #DPLLD ¬abC1 cC2 dd 1 12

9 #DPLLB1 ¬abC1 cC2¬d (e) 14

10 #DPLLU ¬abC1 cC2¬deC3 1 14

11 #DPLLE1 ¬abC1 cC2¬deC3 1 15

of F is found. It contains two out of five variables and therefore represents 23 = 8 total
models of F. The model count M is updated, and the model counter backtracks chrono-
logically (step 3). The most recent decision literal, dd, is flipped, upon which e can be
propagated with reason C3 (step 4). A second model m2 = a¬de is obtained, which rep-
resents 4 total models. The models m1 and m2 contain contradicting literals, namely d
and ¬d. Therefore, their total extensions are pairwise contradicting, and m1 and m2 rep-
resent disjoint sets of total models of F, and we can sum up their model counts. Chrono-
logical backtracking occurs, and M is updated accordingly (step 5). The current trail is
I = ¬a, and F|I contains two unit literals, b and c. Assume we first propagate b with rea-
son C1 (step 6) and then c with reason C2 (step 7). The residual of F under I = ¬abC1 cC2

contains no unit and no empty clause, and there are unassigned variables. Deciding d
results in finding a third model m3 = ¬abC1 cC2 dd (step 8). Since one variable is unas-
signed, m3 represents two total models of F, and M is updated. Chronological backtracking
occurs obtaining I = ¬abC1 cC2¬d and F|I = (e) (step 9). The unit literal e is propagated
with reason C3, and a fourth model m4 = ¬abc¬de is found, which is total. The trail I
contains only propagated literals and therefore represents one total model of F. The model
count M is incremented by one, and the computation terminates with M = 15 (step 11),
which coincides with the model count computed in Example 6.3. The model count of F
equals the sum of the number of models represented by the detected (partial) models, i. e.,
#F = #m1 + #m2 + #m3 + #m4 = 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15, which
equals the model count computed in Example 6.3.

In this chapter, we focused on SAT-based model counting. Unlike in SAT, where
the search terminates after finding one model, in #SAT the search space need be
processed exhaustively, and #SAT is therefore harder than SAT. Chapter 7 is ded-
icated to model enumeration without repetitions and introduces blocking clauses,
which avoid finding models multiple times. Furthermore, we sometimes have to
take into account variables, which are not relevant in a given task. The models
need be projected onto the relevant variables, and in this context we speak of pro-
jected model counting and projected model enumeration addressed in Chapter 8.

7
S AT- B A S E D I R R E D U N D A N T M O D E L E N U M E R AT I O N

Let V be a set of propositional variables and F a (propositional) formula defined
over V. Propositional model enumeration (All-SAT) is the task of enumerating all mod-
els of F. We distinguish between redundant model enumeration, where models are
allowed to be enumerated multiple times, and irredundant model enumeration, in
which repetitions must be avoided. The focus in this thesis—and in this chapter—
is on irredundant model enumeration.1 Just like in #SAT, the search space need be
processed exhaustively, and in irredundant model enumeration we face the same
challenges as far as model detection is concerned.

In Example 6.4 we have seen that model counters based on CDCL with conflict-
directed backjumping might detect models multiple times. This behavior can be
prevented by the usage of so-called blocking clauses. Just as the conflict clause
learned during conflict analysis keeps the solver from repeating a bad assign-
ment,2 a blocking clause ensures that a model is not found again. A simple way
to rule out a model is to add its negation to the formula [104, 131, 144].

Example 7.1 (Blocking clause). Consider again Example 6.4, where V = {a, b, c, d} is
a set of propositional variables, and F = C1 ∧C2 ∧C3 = (¬a∨ b)∧ (c∨ d)∧ (c∨¬d) is
a propositional formula defined over V. Suppose the model m = abcd has been found. The
corresponding assignment and blocking clause are σ = {a 7→ 1, b 7→ 1, c 7→ 1, d 7→ 1},
and B = ¬m = (¬a ∨¬b ∨¬c ∨¬d), respectively, and B is added to F. Suppose later in
the search the assignment τ = {a 7→ 1, b 7→ 1, c 7→ 1} is encountered. Since B|τ = (¬d),
the literal ¬d is propagated with reason B obtaining υ = {a 7→ 1, b 7→ 1, c 7→ 1, d 7→ 0},
which differs from σ. Hence, any model of F matching σ will not be found again.

As soon as all models are found and the corresponding blocking clauses are
added, the formula F becomes unsatisfiable. A very basic All-SAT solver could
therefore execute CDCL with non-chronological backjumping as in SAT solving.
Whenever a model has been found and not all assignments have been tested, it
would add the corresponding blocking clause to F, undo all assignments at deci-
sion levels higher than zero, and continue its search. If it finds no model at all, the
input formula is unsatisfiable, and the solver terminates in state M = 0.

To make this idea more concrete, we extend our CDCL framework presented
in Figure 5.2 accordingly. Non-terminal states are represented by tuples (F, I, M),
where F denotes a formula defined over the set of variables V, and I denotes a trail
with variables in V. The third element M is a propositional formula in disjunctive
normal form (DNF), which is a disjunction of cubes, which are conjunctions of liter-
als. The initial state is (F, ε, 0), where 0 denotes the empty DNF formula. The end

1 In Chapter 20, we additionally present a method for enumerating redundant short partial models.
2 as long as this conflict clause is not deleted

37

38 sat-based irredundant model enumeration

AllCDCLU: (F, I, M) ;AllCDCLU (F, I `C, M) if exists C ∈ F with (`) = C|I

AllCDCLD: (F, I, M) ;AllCDCLD (F, I `d, M) if F|I 6= 0 and

units(F|I) = ∅ and var(`) ∈ V − I

AllCDCLJ: (F, I, M) ;AllCDCLJ (F ∧ D, J `D, M) if exists C ∈ F with

J K def
= I and C|I = D|I = 0 and (`) = D|J and F |= D

AllCDCLB1: (F, I, M) ;AllCDCLB1 (F ∧ B, J `, M ∨ I) if F|I = 1 and

J `d K def
= I and B def

= ¬I and decs(K) = ∅

AllCDCLE0: (F, I, M) ;AllCDCLE0 M if exists C ∈ F with C|I = 0 and

decs(I) 6= ∅

AllCDCLE1: (F, I, M) ;AllCDCLE1 M ∨ I if F|I = 1 and decs(I) = ∅

Figure 7.1: All-CDCL rules.

state is M whose cubes are the models of F, if F is satisfiable, and M = 0 otherwise,
and which therefore is logically equivalent to F. The transition relation ;AllCDCL is
the union of the transition relations ;R, where R is either AllCDCLU, AllCDCLD,
AllCDCLJ, AllCDCLB1, AllCDCLE0, or AllCDCLE1.

The rules of our All-CDCL framework are depicted in Figure 7.1. Analogously
to our CDCL calculus, they describe unit propagation (suffix U), decisions (D),
conflict-driven backjumping (J), and backtracking after a model (B1) as well as
termination with a conflict (E0) or a model (E1). The rules AllCDCLU, AllCDCLD,
AllCDCLJ, and AllCDCLE0 differ from their counterpart in the CDCL framework in
Figure 5.2 only in the additional element M in non-terminal states and in the end
state. The end rule AllCDCLE1 is applicable only if no decision is left on the trail I.
The rule AllCDCLB1 corresponds to the rule #DPLLB1 in our #DPLL framework
in Figure 6.1 but with adding a blocking clause to F and recording the satisfying
assignment instead of updating the model count. We show the working of our
calculus by means of a small example.

Example 7.2 (CDCL-based model enumeration with blocking clauses). Consider the
formula F = C1 ∧ C2 = (a ∨ b) ∧ (¬a ∨ b) defined over the set of variables V = {a, b}.
The execution steps are listed in Table 7.1. After deciding a (step 1) and propagating b
with reason C2, a first model ab is found (step 2). The corresponding blocking clause
is B = (¬a ∨ ¬b). It is added to F resulting in F = (a ∨ b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b),
and the model is added to M, which gives us M = (a ∧ b). No assignments occurred
at decision level zero, and all assignments are undone (step 3). We decide again a, and
this time F|I contains two unit clauses, namely C2|I = (b) and B|I = (¬b) (step 4).
We choose to propagate b with reason C2, upon which the blocking clause B becomes
empty (step 5). Although the current assignment ab is a model of F, it is blocked by B
and is not enumerated again. The conflict is analyzed by resolving the conflicting clause B
with the reason of b, C2, and the unit clause D = (¬a) is learnt. Our formula is now

sat-based irredundant model enumeration 39

Table 7.1: All-CDCL execution for Example 7.2.

step rule I F|I M learnt

0 ε (a ∨ b) ∧ (¬a ∨ b) 0

1 AllCDCLD ad (b) 0

2 AllCDCLU ad cC2 1 0

3 AllCDCLB1 ε
(a ∨ b) ∧ (¬a ∨ b) ∧

(¬a ∨ ¬b)
(a ∧ b)

4 AllCDCLD ad (b) ∧ (¬b) (a ∧ b)
5 AllCDCLU ad bC2 0 (a ∧ b)
6 AllCDCLU ¬aD (b) (a ∧ b) D def

= (¬a)
7 AllCDCLU ¬aD bC1 1 (a ∧ b) D def

= (¬a)
8 AllCDCLE1 ¬aD bC1 1 (a ∧ b) ∨ (¬a ∧ b) D def

= (¬a)

F = (a∨ b)∧ (¬a∨ b)∧ (¬a∨¬b)∧ (¬a). Learning a unit forces the model enumerator
to jump to decision level zero and to propagate this unit literal (step 6). We now have
F|I = (b), and b is propagated with reason C1 (step 7). A second model ¬ab has been
found. It is added to M, and since I contains no decisions, the computation terminates in
state M = (a∧ b)∨ (¬a∧ b) (step 8). Notice that ab is a model of the original formula F,
but not of F ∧ B ∧ D, whereas ¬ab is a model of F and also of F ∧ B ∧ D.

Clearly, blocking clauses must not be deleted anytime, and in the worst case
their number is exponential in the number of variables |V|. Consequently, the
formula F might increase exponentially in size. Furthermore, blocking clauses
might contain a great number of literals, and long clauses do not propagate easily.
The obvious consequence is a potential negative impact on solver performance
and memory requirements. We are therefore interested in finding short blocking
clauses and adding the fewest possible of them to F.

To obtain shorter blocking clauses, Morgado and Marques-Silva [144] propose
to consider only the negated decision literals, i. e., to define B = ¬decs(I), where I
is a trail satisfying F. However, this does not affect their number, since the values
of the unconsidered (propagated) literals are uniquely determined. The number
and the size of blocking clauses can also be reduced by determining short partial
models. The shorter a model, the higher the number of total models it represents
and the larger the portion of the search space ruled out by the corresponding
blocking clause. In this context, we also speak of search space pruning. Consider-
able effort has therefore been put into devising methods for shrinking, or shorten-
ing, (total) models. McMillan [131] proposed to execute conflict analysis on the
input formula represented as a circuit and a total satisfying assignment. A similar
method was introduced by Jin, Han, and Somenzi [103]. After finding a model,
unit propagation is executed on the original formula represented as a circuit and
the just detected satisfying assignment until the circuit is satisfied. The negation
of this satisfying assignment is added to F as a blocking clause, which becomes
empty under this satisfying assignment. The assignments involved in the conflict
are identified by means of conflict analysis, which in turn might give a shorter
model. A different approach was taken by Gebser, Kaufmann, and Schaub [84].
Although designed for Answer Set Programming (ASP), their method can readily

40 sat-based irredundant model enumeration

be adapted to All-SAT. In essence, they designed the decision strategy such that
blocking clauses become obsolete later in the search and can safely be removed
from F. This ensures that anytime F contains at most a number of blocking clauses
which is polynomial in the number of variables |V|.

Blocking clauses not only ensure that models are not enumerated multiple times,
they also provide the reasons of flipped decision literals. This is essential in CDCL,
since conflict analysis presupposes that for every literal on the trail which is not
a decision, its reason is contained in F. Assume a blocking clause B consists of
the flipped decision literals on a satisfying trail. If all but the most recent decision
in B are repeated, the blocking clause B becomes unit, as in Example 7.1, and the
negation of this decision is propagated. In this sense, the clause B acts as reason
for the most recent decision flipped after finding a model: it becomes unit after
the assignments on the greatest decision level are undone, and its unit literal is
the negation of the most recent decision. A simple example clarifies this idea.

Example 7.3 (Reason of flipped decision). Consider again the situation in Example 7.1
where F = C1 ∧ C2 ∧ C3 = (¬a ∨ b) ∧ (c ∨ d) ∧ (c ∨ ¬d) and V = {a, b, c, d}, and the
model m = abc of F has just been found. Suppose the trail is I = ad bC1 cd. If we only
add the negated decisions to the blocking clause, we obtain B = (¬a ∨ ¬c). Flipping the
most recent decision literal involves undoing all assignments starting from the most recent
decision. In our example, only c is affected, and the resulting trail is J = ad bC1 . Now B
becomes unit, i. e., B|J = (¬c), and (F ∧ B)|J = (c∨ d)∧ (c∨¬d)∧ (¬c). The literal ¬c
is propagated with reason B, and the resulting trail is K = ad bC1¬cB, which is exactly I
after flipping the most recent decision literal c.

Example 7.3 shows that without the use of blocking clauses the model enu-
merator might face problems during conflict analysis. Grumberg, Schuster, and
Yadgar [94] address this issue by introducing sub-levels for flipped decisions. Dur-
ing conflict analysis, flipped decisions are treated similarly to decisions. Toda and
Soh [191] take a different approach by modifying the conflict analysis scheme.

Repetitions can also be prevented by using exclusively chronological backtrack-
ing as in #DPLL shown in Figure 6.1 but by storing the models instead of the
model count. In this manner, all decisions are flipped in reverse assignment or-
der, and each assignment occurs exactly once, which renders the use of blocking
clauses obsolete. However, as shown above, DPLL-based model enumerators are
not able to escape search space regions without model early, which is a signifi-
cant drawback compared to CDCL with conflict-driven backjumping. Therefore,
the challenge in propositional model enumeration is twofold: on the one hand we
want to avoid (or at least limit) the use of blocking clauses, and on the other hand
we want to take advantage of conflict analysis and conflict-directed backjumping.

After focusing on SAT-based model counting and enumeration, we now turn
our attention to projection. In some tasks, only a subset of the variables is relevant.
This poses particular challenges, since the models need be projected onto these
relevant variables. Common solutions are presented in Chapter 8.

8
P R O J E C T I O N

Let X and Y be two disjoint sets of propositional variables, and let F(X, Y) be a
propositional formula defined over the set of variables X∪Y. If for our application
only the variables in X are relevant, we are interested in the models of F projected
onto X. Stated otherwise, we existentially quantify F over Y and write ∃Y . F(X, Y).
The models of ∃Y . F(X, Y) are the models of F projected onto X, and projected
model counting is accordingly also referred to as #∃SAT. In this sense, #SAT can
be seen as a special case of #∃SAT, namely the one in which Y = ∅ [202].

Example 8.1 (Projected model counting and enumeration). Consider again Exam-
ple 5.1 where F = (a ∧ c) ∨ (b ∧ d). The total models of F are models(F) = {abcd,
abc¬d, a¬bcd, a¬bc¬d, ab¬cd, ¬abcd, ¬ab¬cd} and #F = 7 (see Example 6.1).
Now assume X = {a, b} and Y = {c, d}. The total models of F projected onto X are
models(∃Y . F(X, Y)) = {ab, a¬b,¬ab}, and #(∃Y . F) = 3.

Instead of existentially quantifying F over Y, in practice one would remove from
the models of F all literals with variable in Y. However, Example 8.1 shows that it
is not sufficient to just project the models of F(X, Y) onto X: two models differing
only in literals with variable in Y are considered the same model projected onto X
and hence only count as one model. This is the case, e. g., for abcd and ab¬cd.
One must therefore prevent the detection of multiple models differing only in
literals with irrelevant variables. This can be achieved either by using blocking
clauses or by prioritizing decisions of relevant variables over decisions of irrelevant
variables and by backtracking chronologically over relevant decisions and non-
chronologically over irrelevant decisions [84, 94].

Projection plays an important role in counting the models of the CNF transfor-
mation of an arbitrary formula F(V). As argued in Chapter 6, the Tseitin transfor-
mation of F, denoted tseitin(F), preserves the model count of F. Furthermore, the
models of tseitin(F) projected onto V, resp. the models of ∃T . tseitin(F), where T
denotes the Tseitin variables, are exactly the models of F.

Example 8.2 (Tseitin transformation and projection). Consider again the Tseitin trans-
formation in Example 5.2. It has 7 total models: abcd t1 t2, abc¬dt1¬t2, a¬bcd t1¬t2,
a¬bc¬dt1¬t2, ab¬cd¬t1 t2, ¬abcd¬t1 t2, and ¬ab¬cd¬t1 t2}. Their projection onto
the relevant variables X gives exactly the models of F listed in Example 8.1.

Exact projected model counting occurs, e.g., in planning [10, 202] and product
configuration [203], and several #∃SAT solvers exist [10, 116]. Projected model enu-
meration is applied in automotive configuration [203], existential quantifier elimi-
nation [32], image computation [94, 95], predicate abstraction [118], and bounded
model checking [184].

41

Part III

D U A L P R O J E C T E D M O D E L C O U N T I N G

9
PA P E R 1 : A N A B S T R A C T D U A L P R O P O S I T I O N A L M O D E L
C O U N T E R

published. In: YSIP2 – Proceedings of the Second Young Scientist’s International
Workshop on Trends in Information Processing, Dombai, Russian Federation, May 16–
20, 2017. Ed. by Steffen Hölldobler, Andrey Malikov, and Christoph Wernhard.
Vol. 1837. CEUR Workshop Proceedings. CEUR-WS.org, 2017, pp. 17–26. url: ht
tp://ceur-ws.org/Vol-1837/paper5.pdf.

authors . Armin Biere, Steffen Hölldobler, and Sibylle Möhle.1

acknowledgments . The authors acknowledge support by the Deutsche For-
schungsgesellschaft (DFG) under grant HO 1294/11-1 and by the Austrian Science
Fund (FWF) project W1255-N23. We also want to thank Andreas Fröhlich helping
us in the early brain-storming and discussing phase of this idea.

abstract. Various real-world problems can be formulated as the task of count-
ing the models of a propositional formula. This problem, also called #SAT, is there-
fore of practical relevance. We present a formal framework describing a novel ap-
proach based on considering the formula in question together with its negation.
This method enables us to close search branches earlier. We formalize a non-dual
variant and argue that our framework is sound.

9.1 introduction

The problem #SAT consists in determining the number of models of a proposi-
tional formula. Applications can be found in a variety of real-world domains, such
as reasoning [120, 167], model-based diagnosis of physical systems [112], prod-
uct configuration in the automotive industry [110], planning [162], and frequent
itemset mining [96]. The breadth of these applications emphasizes the practical
relevance of #SAT.

Birnbaum and Lozinskii presented an algorithm for counting propositional mo-
dels based on the Davis Putnam Procedure [27]. In [15], the authors extend this
method by splitting the formula in question into subformulae over disjoint sets
of variables. The model count is then obtained by multiplying the model counts
of these subformulae. In Cachet [172] clause learning and component caching
are combined. sharpSAT [189] builds upon Cachet introducing a new component
caching scheme. Projected model counting was implemented in [10, 104]. Finally,
in [37], a parallel approach is implemented.

1 The authors are listed in alphabetical order.

45

http://ceur-ws.org/Vol-1837/paper5.pdf
http://ceur-ws.org/Vol-1837/paper5.pdf

46 paper 1 : an abstract dual propositional model counter

With a similar motivation as [72] but for #SAT instead of QBF in the spirit
of [155], we present a formal framework describing a #SAT solving procedure
based on DPLL, called Abstract Dual #DPLL, and a formalization of a non-dual
variant and argue that our framework is sound. The basic idea of our dual ap-
proach consists in executing DPLL on a formula as well as on its negation. In
our counting algorithm, we follow the main idea presented in [27]. We implement
our framework in SWI-Prolog [199] making use of the PIE system [198]. First ex-
periments showed the suitability of our approach. While a dual approach was
addressed in QBF [72, 93], we are not aware of any work on #SAT aiming in this
direction.

The paper is structured as follows: After giving some background information,
in Section 9.3 we present the rules for dual propositional model counting underly-
ing our counting procedure. In Section 9.4 we introduce our framework and argue
about its soundness. By means of an example, in Section 9.5 we demonstrate the
operation of our framework as well as of a non-dual variant, before in Section 9.6
we conclude and point out future work. Our notation is based on the one intro-
duced in [97].

9.2 preliminaries

9.2.1 Propositional Satisfiability and Model Counting

Let V be a fixed finite set of propositional variables. A literal ` is either a vari-
able a (positive literal) or a negated variable ¬a (negative literal). We denote with
var(`) the variable of `. The complement ` of a literal ` is its negation, i. e., ` = ¬a
if ` = a, and ` = a if ` = ¬a.

A propositional formula F over variables in V is in conjunctive normal form
(CNF), if it is a conjunction of clauses. A clause is a disjunction of literals. We
denote with var(F) the set of variables occurring in F.

We define an interpretation I as a mapping from the set of variables V to the set
of truth values {1, 0}. If I(a) ∈ {1, 0} for all a ∈ V, then I is called a total interpre-
tation. Otherwise, I is said to be a partial interpretation. An interpretation may be
represented by a sequence of literals containing no pair of complementary literals
where each literal occurs at most once. An empty sequence is represented by ε. Let
I = `1 . . . `m be a sequence of literals representing an interpretation over V. We
say that a literal ` ∈ I iff ` = `k for a k ∈ {1, . . . , m}. Let I′ = `m+1 . . . `n be another
sequence of literals representing an interpretation over V. We define the concatena-
tion of I and I′ as I I′ = `1 . . . `n. With I ` I′ = `1 . . . `m ``m+1 . . . `n we denote the
concatenation of I, `, and I′. Note that for I I′ and I ` I′ to represent interpretations,
they have to meet the requirements given above. We interpret a sequence of liter-
als over different variables also as a set of literals as well as the (possibly partial)
interpretation which sets all its literals to true and vice versa. In the rest of this
paper, I will denote an interpretation assuming an appropriate representation.

An interpretation I satisfies a positive literal ` with variable a, in symbols I |= `,
iff I(a) = 1. Analogously, I satisfies a negative literal ` with variable a iff I(a) = 0.
Since a clause C is a disjunction of literals, I |= C iff I |= ` for a literal ` ∈ C.
Analogously, I |= F iff I |= C for all clauses C of a formula F, since F is defined as
a conjunction of clauses. Whenever I |= F, we say that I is a model for F where I
can be partial representing a partial model or total representing a total model. The
model count #F of a formula F corresponds to the number of total models of F.

9.2 preliminaries 47

Two formulae F and G are semantically equivalent, denoted by F ≡ G, iff for all
interpretations I the following holds: I |= F iff I |= G. Thus, two formulae are
semantically equivalent iff they have the same models.

The reduct of a formula F with respect to an interpretation I is given by F|I =
{C|I | C ∈ F and C ∩ I = ∅}, where C|I = {` | ` ∈ C and ` /∈ I}. Let F = (x1) ∧
(x2 ∨ x3) be a formula over V = {x1, x2, x3}. In set notation, F = {{x1}, {x2, x3}}.
Let I = {x1,¬x2} be an interpretation over V. Then, F|I = {{x3}}. Whenever
F|I = 1, I is a model of F. We say that I satisfies F and may refer to I as a satisfying
interpretation where adequate. If 0 ∈ F|I , we say that a conflict arises in F|I or that I
falsifies F and call I a falsifying interpretation. In our example, I neither satisfies nor
falsifies F.

9.2.2 The Davis Putnam Logemann Loveland Procedure

The Davis Putnam Logemann Loveland (DPLL) procedure [60] is based on the
Davis Putnam Procedure (DPP) [61] and conducts a systematic search in the space
of all possible interpretations. This space can be visualized as a binary search tree
where each node represents a partial interpretation and each leaf represents a total
interpretation. DPLL can be visualized as a depth-first tree search based mainly
on unit propagation, decisions, and backtracking.

Let F be a formula and I an interpretation over V. If during search a unit
clause {`} occurs in F|I , the unit literal ` must be assigned the value 1 to make I
satisfy F. This is ensured by unit propagation. ` is called propagation literal, and we
say that `’s value is implied by F|I . If there is no unit clause in F|I , a decision literal `
is chosen and assigned a value. If I falsifies F, backtracking occurs, i. e., all assign-
ments up to the latest decision are undone and the value of the decision literal
flipped. The search continues with I modified accordingly. For a more detailed
description we refer to [57].

9.2.3 Counting Models by Means of the Davis Putnam Procedure

Let F be a formula and I an interpretation over variables V. By means of a decision
with respect to a literal `, the set of models of F is split into two disjoint sets. In
one I(`) = 1, in the other I(`) = 0. Hence, #F|I = #F|I∪{`} + #F|I∪{`}. Based
on this observation, a method for counting models based on the Davis Putnam
procedure [61] was presented in [27]. The corresponding pseudocode is depicted
in Algorithm 1.

It is important to note that, unlike in SAT solving, after determining a satis-
fying interpretation, the search continues until the entire search space has been
processed. The model count is built recursively according to the computation dis-
cussed in the previous paragraph.

We now present rules to determine #F based on Algorithm 1. Let P be a CNF for-
mula over V such that P ≡ F. #F|I = #P|I = 2m with m = |V| − |I| representing
the number of unassigned variables. Now #P|I can be computed by the following
rules: Whenever I falsifies P, #P|I = 0; whenever I satisfies P, #P|I = 2|V|−|I|;
whenever #P|I is undefined, then #P|I = #P|I∪{`} + #P|I∪{`}, where var(`) ∈ V

and {`, `} ∩ I = ∅.

48 paper 1 : an abstract dual propositional model counter

function CDP(F, |V|) . F formula over a set of variables V
if F is empty then . F is satisfiable

return 2|V|

else if F contains an empty clause then . F is unsatisfiable
return 0

else if F contains a unit clause {`} then . Unit propagation
return CDP(F|{`}, |V| − 1)

else
choose a variable a ∈ V

return CDP(F|{a}, |V| − 1) + CDP(F|{¬a}, |V| − 1))
end if

end function
Algorithm 1: Counting by Davis-Putnam (CDP) [27].

9.2.4 An Abstract Framework for Propositional Model Counting

Let F be a formula over V and P be a CNF formula over V such that P ≡ F. We
describe Abstract #DPLL as a state transition system (S, ;) with a set of states S
and a binary transition relation ;⊆S×S. The set of states is defined by S := N∪
{(P, I, M) | P is a CNF formula such that P ≡ F, I is an interpretation, M ∈ N},
and ; := {;Dec, ;NB1, ;NB0, ;End1, ;End0}.

In this context, P is called working formula, I is called working interpretation,
and M is called working number of models. The initial state is defined by (P, ε, 0).
The terminal state is #P = #F. `d denotes a decision literal, i.e., a literal which was
assigned a value by a decision. Analogously, ` denotes a propagation literal. The
rules are presented in Figure 9.1.

By means of the Dec rule, the working interpretation is extended by an unas-
signed decision literal `d whose variable occurs in V. Naive backtracking is ap-
plied whenever the working interpretation either satisfies or falsifies P and if it
contains a decision literal, i. e., not not all possible interpretations have been tested
yet. In the former case, the model count has to be incremented by 2m, where m
represents the number of unassigned variables (NB1). In the latter case, the model
count remains unchanged (NB1). The procedure terminates when I either satis-
fies (End1) or falsifies (End0) P and does not contain any decision literal, i.e., all
possible interpretations have been tested. The model count is updated accordingly.

If our framework is sound, every implementation which can be modeled by
means of it is sound as well. This comprises optimizations, such as unit propaga-
tion. Restricting our framework to a minimal set of rules simplifies the presenta-
tion since less cases have to be distinguished and reasoned about.

9.3 counting models by taking into account the negated formula

Let F be a formula over variables V, P and N be CNF formulae over V such
that P ≡ F and N ≡ ¬F, respectively. Then, #F = #P = 2|V| − #N. Further
let I be an interpretation over V. For the reduct F|I the same observation holds:
#F|I = #P|I = 2|V|−|I| − #N|I , where |V| − |I| represents the number of unas-
signed variables. Given F, P, N, and V, we define the counting algorithm c taking
as input I:

9.3 counting models by taking into account the negated formula 49

Dec: (P, I, M) ;Dec (P, I `d, M) iff var(`) ∈ V and {`, `} ∩ I = ∅

NB>: (P, I `d I′, M) ;NB> (P, I `, M + 2|V|−|I ` I′|) iff

P|I ` I′ = 1 and I′ contains only propagation literals

NB0: (P, I `d I′, M) ;NB0 (P, I `, M) iff

0 ∈ P|I ` I′ and I′ contains only propagation literals

End1: (P, I, M) ;End1 M + 2|V|−|I| iff

P|I = 1 and I contains only propagation literals

End0: (P, I, M) ;End0 M iff

0 ∈ P|I and I contains only propagation literals

Figure 9.1: Rules in Abstract #DPLL. P is a CNF formula over variables V, I and I′ are
interpretations over disjoint sets of variables, ` is a literal and M ∈ N. The
procedure is based on DPLL combined with naive backtracking and terminates
when the entire search space has been processed.

R1: c(I) = 0 if 0 ∈ P|I Conflict in P|I
R2: c(I) = 2|V|−|I| if P|I = 1 I |= P
R3: c(I) = 2|V|−|I| if 0 ∈ N|I Conflict in N|I
R4: c(I) = 0 if N|I = 1 I |= N
R5: c(I) = c(I ∪ {`}) + c(I ∪ {`})

where var(L) ∈ V and {`, `} ∩ I = ∅
else

If a conflict in P|I arises, I can not be extended to any total model for F, and
the model count is 0 (R1). Whenever I |= P, I can be extended to 2|V|−|I| total
models for F, where |V| − |I| is the number of unassigned variables (R2). In case
of a conflict in N|I , I is a model for F and can be extended to 2|V|−|I| total models
for F (R3). Whenever I |= N, I can not be extended to a total model for F, and
the model count is 0 (R4). If both P|I and N|I are undefined, #F|I = #N|I∪{`} +
#N|I∪{`} (R5) [27].

Unit propagation in P|I can be simulated by rules R5 and R1:

c(I) = c(I ∪ {`}) + c(I ∪ {`})︸ ︷︷ ︸
0

= c(I ∪ {`}) if {`} ∈ P|I (9.1)

{`} is a unit clause in P|I , and therefore ` must be set to 1 for I ∪ {`} to satisfy P.
This implies that I ∪ {L} falsifies P, i.e., c(I ∪ {`}) = 0 according to rule R1.

50 paper 1 : an abstract dual propositional model counter

Unit propagation in N|I can be simulated by rules R5 and R3:

c(I) = c(I ∪ {`}) + c(I ∪ {`})︸ ︷︷ ︸
2|V|−|I∪{`}|

= c(I ∪ {`}) + 2|V|−|I∪{`}| if {`} ∈ N|I (9.2)

{`} is a unit clause in N|I , and therefore ` must be set to 1 for I ∪ {`} to satisfy N.
This implies that I ∪ {`} falsifies N, i.e., I ∪ {`} satisfies F and can be extended to
2|V|−|I∪{`}| total models for F according to rule R3.

9.4 abstract dual #dpll

Let F be a formula over variables V, P and N be CNF formulae over V such
that P ≡ F and N ≡ ¬F, respectively. Note that in particular var(F) = var(P) =
var(N) = V. Let I be an interpretation. Clearly, I |= P iff I 6|= N and vice versa.
P and N are passed to a DPLL [60] solver which works on both formulae simul-
taneously. The model count is computed according to the rules introduced in Sec-
tion 9.3.

If a conflict in P|I arises, I can not be extended to a total model for F, and
the model count is 0. Whenever P|I = 1, I satisfies P and can be extended to
2m total models for F, where m is the number of unassigned variables. This model
count is added up to the number of models found so far. In both cases, the solver
backtracks chronologically and flips the value of the decision literal turning it
into a propagation literal. The search terminates if I contains no decision literal,
indicating that the whole search space has been processed.

If a conflict arises in N|I , I is a model for F and can be extended to 2m total
models for F, where m is the number of unassigned variables. This model count is
added up to the number of models found so far. Whenever N|I = 1, I satisfies N
and can not satisfy F. In both cases, the solver backtracks chronologically and flips
the value of the decision literal turning it into a propagation literal. The search
terminates if I does not contain any decision literal, indicating that the whole
search space has been processed.

Whenever both P|I and N|I are undefined, an unassigned literal ` is chosen and
assigned a value becoming a decision literal. The search continues with I extended
by `.

In our version of DPLL, every node is visited at most once, and there is no need
to remember the models found so far, e. g., by adding blocking clauses (i. e., the
negated models) to P to avoid finding models several times. This ensures that the
model count returned by the algorithm corresponds to the number of models of F.

9.4.1 States and Transition Relations

Based on Abstract #DPLL introduced in Section 9.2.4, we describe Abstract Dual
#DPLL as a state transition system (S, ;) with set of states S and transition rela-
tion ;⊆S×S as follows:

S := N∪ {(P, N, I, M) | P, N are CNF formulae with

P ≡ F and N ≡ ¬F, I is an interpretation, M ∈N}
; := {;Dec, ;NB1, ;NB0, ;End1, ;End0}

In this context, P and N are called working formulae, I is called working interpretation,
and M is called working model count. The initial state is defined by (P, N, ε, 0). The

9.4 abstract dual #dpll 51

Dec: (P, N, I, M) ;Dec (P, N, I `d, M) iff

var(`) ∈ V and {`, `} ∩ I = ∅

NB1: (P, N, I `d I′, M) ;NB1 (P, N, I `, M + 2|V|−|I ` I′|) iff

(0 ∈ N|I ` I′ or P|=1) and I′ contains only propagation literals

NB0: (P, N, I `d I′, M) ;NB0 (P, N, I `, M) iff

(0 ∈ P|I ` I′ or N|I ` I′ = ∅) and I′ contains only propagation literals

End1: (P, N, I, M) ;End1 M + 2|V|−|I| iff

(0 ∈ N|I or P|I = 1) and I contains only propagation literals

End0: (P, N, I, M) ;End0 M iff

(0 ∈ P|I or N|I = 1) and I contains only propagation literals

Figure 9.2: Rules in Abstract Dual #DPLL. P and N are CNF formulae over V such that
N ≡ ¬P, I and I′ are interpretations over disjoint sets of variables, ` is a literal,
and M ∈N. The procedure is based on DPLL combined with naive backtrack-
ing and terminates as soon as the entire search space has been processed.

terminal state is the model count of P and therefore of F. We denote with `d a deci-
sion literal, i. e., a literal which was assigned a value by a decision. Analogously, `
denotes a propagation literal. The rules are presented in Figure 9.2.

9.4.2 Rules

Dec I is extended by an unassigned decision literal `d whose variable occurs
in V.

NB1 Naive backtracking is applied whenever the working interpretation either
satisfies P or falsifies N and contains a decision literal `d. In this case, the working
interpretation has the form I `d I′. The model count is incremented by 2|V|−|I `

d I′|,
according to rules R2 and R3 specified in Section 9.3.

NB0 Naive backtracking is applied whenever the working interpretation either
satisfies N or falsifies P and contains a decision literal
decided`. In this case, the working interpretation is of the form I `d I′. The model
count remains unaffected, see rules R1 and R4 specified in Section 9.3.

End1 The procedure terminates with a satisfying interpretation I. This is the
case when I either satisfies P or falsifies N and contains no decision literal. The
model count is incremented by 2|V|−|I|, according to rules R2 and R3 specified in
Section 9.3.

52 paper 1 : an abstract dual propositional model counter

End0 The procedure terminates with a falsifying interpretation I. This is the case
when I either satisfies N or falsifies P and contains no decision literal. The model
count remains unaffected, according to rules R1 and R4 specified in Section 9.3.

9.4.3 Unit Propagation

Unit propagation is simulated by the Dec and NB1 or NB0 rule, respectively,
according to Section 9.3. In particular, the Dec rule may be applied if a unit
clause {`} occurs in either P|I or N|I .

Unit Propagation in P|I Let’s assume that after setting ` to 1, during the further
execution of the procedure a conflict or empty reduct results in either P|I or N|I .
Naive backtracking is performed, M is updated, and `’s value is flipped according
to rules NB1 or NB0 (see Section 9.4.2). Since ` is a unit literal in P|I , the unit
clause {`} in P|I becomes empty when `’s value is flipped, and I ` falsifies P.
Hence, #P|I ` = 0. This corresponds to the second term in the sum of Equation 9.1.

Unit Propagation in N|I Let’s assume that after setting ` to 1, during executing
the procedure a conflict or empty reduct results in either P|I or N|I . Naive back-
tracking is performed, M is updated, and `’s value is flipped according to one of
the rules NB> or NB0 (see Section 9.4.2). Since ` is a unit literal in N|I , the unit
clause {`} in N|I becomes empty, and I ` falsifies N. Hence, I ` satisfies P, and
#P|I ` = 2|V|−|I `|. This corresponds to the second term in the sum of Equation 9.2.

9.4.4 Soundness

To make sure that the correct model count is returned by our framework, every
node in the search tree must be visited or counted exactly once. By this we mean
that an ancestor u of a node v may be visited, but not v itself. This can only
occur if u represents a satisfying or falsifying interpretation. In this case, all its
descendants, including v, represent a satisfying or falsifying interpretation as well,
and the model count determined in v includes all of them. The naive backtracking
mechanism employed in our DPLL version ensures that each node in the search
tree is visited at most once. Therefore, we have to show that our framework does
not allow for multiple visits of nodes.

The working interpretation I is extended iteratively by the Dec rule until it either
satisfies or falsifies one of P or N. If I contains a decision literal, this indicates that
not all combinations of truth values of the values have been tested yet. Chronolog-
ical backtracking occurs and the value of the decision literal is flipped, i.e., another
combination of truth values will be tested in the next step. The NB1 and NB0 rules
describe this behaviour for the case in which I is either a satisfying or falsifying
interpretation, respectively. Analogously, if I contains no decision literal, all possi-
ble combinations of truth values have been tested, and the search terminates. This
behaviour is addressed by the End1 and End0 rules, where I is either a satisfying
or falsifying interpretation, respectively.

To prove that our framework returns the correct model count, we show that the
rules presented in Section 9.4.2 update the working model count correctly. The
Dec rule extends the working interpretation I by a decision literal whenever the
working interpretation neither satisfies nor falsifies either P or N, thus it must not
alter the number of models. In our framework, M remains unchanged when the
Dec rule is applied, and the requirement holds. The NB1 and End1 rules are ap-

9.5 example 53

plicable, whenever the working interpretation either falsifies N or is a (possibly
partial) model for P. Whenever it falsifies N, it satisfies P and can be extended
to 2m models of P with m = |V| − |I| denoting the number of unassigned vari-
ables. If prior to applying one of these two rules the working model count was M,
it should amount to M + 2m afterwards. The NB1 and End1 rules are defined
accordingly. The NB0 and End0 rules are applicable, whenever the working inter-
pretation either falsifies P or is a model for N. In both cases, it can not satisfy P
and thus can not be extended to a model of P. The working model count has to
remain unaffected by the application of these two rules. In our framework, this is
ensured by their definition.

From these arguments it follows that our framework is sound. We further imple-
mented the framework in SWI-Prolog [199] making use of predicates defined in
PIE [198] for a second check of the rules. First experiments showed the suitability
of our approach, while a broader evaluation is ongoing.

9.5 example

We demonstrate the function of Abstract Dual #DPLL by an example. Let us con-
sider a #SAT algorithm implementing the rules defined in Abstract Dual #DPLL
introduced in Section 9.4 as well as rules UPP and UPN addressing unit propaga-
tion in P and N, respectively. Unit propagation in P can be executed if a unit clause
occurs in P|I , and, according to Equation 9.1, the model count is not affected. Unit
propagation in N can be applied if a unit clause occurs in N|I . It modifies the
model count as shown in Equation 9.2. We define rules for unit propagation using
the notation of our framework to illustrate their effect. To this end, we introduce
transition relations ;UPP and ;UPN, respectively.

UPP: (P, N, I, M) ;UPP (P, N, I `, M) if {`} ∈ P|I

UPN: (P, N, I, M) ;UPN (P, N, I `, M + 2|V|−|I `|) if {`} ∈ N|I

Let F be an arbitrary formula over a set of variables V, P and N be CNF formulae
over V such that P ≡ F and N ≡ ¬F, respectively. Let I denote an interpretation
over V and M the working model count. The empty formula is represented by ∅,
the empty clause by ε. In this context, I is represented by a sequence of literals.

Consider as an example F = (x1 ∧ x2) ∨ (x3), where #F = 5. Then, V = {x1, x2,
x3}, P = (x1 ∨ x3) ∧ (x2 ∨ x3), and N = (¬x1 ∨ ¬x2) ∧ (¬x3). We assume that
the variables are ordered in the following manner: x1 < x2 < x3. For choosing
the decision literal, various heuristics may be applied. The same applies to the
choice of the unit literal, if several unit clauses occur. In our example we define
that literals are picked in ascending order of their variable and that they are set
to >. The execution trace is depicted in Table Table 9.1. Each row corresponds to
an execution step with I, P|I , N|I , and M obtained by applying the rule indicated
in the second column.

Step 0 The system is initialized: P ≡ F, N ≡ ¬F, I = ε, and M = 0. N|I contains a
unit clause, namely (¬x3), and I neither satisfies nor falsifies either P or N. Hence,
the preconditions of the UPN rule are met.

Step 1 By means of the UPN rule, ¬x3 is propagated and appended to I which be-
comes I = ¬x3. M has to be increased by 2m, where m = |{x1, x2, x3}| − |(¬x1)| =

54 paper 1 : an abstract dual propositional model counter

Table 9.1: Trace of a #SAT algorithm implementing the rules of Abstract Dual #DPLL ex-
tended by unit propagation. P and N are formulae such that N ≡ ¬P. I, P|I ,
N|I , and M denote the working interpretation, the working formulae and the
working model count after applying the rule indicated in the second column, re-
spectively. I is built according to the DPLL mechanism. Instead of terminating
when I satisfies P, the model count is updated, naive backtracking is applied
and the search continues until all decision literals are worked on.

step rule I P|I N|I M

0 ε (x1 ∨ x3) ∧ (x2 ∨ x3) (¬x1 ∨ ¬x2) ∧ (¬x3) 0

1 UPN ¬x3 (x1) ∧ (x2) (¬x1 ∨ ¬x2) 4

2 UPP ¬x3 x1 (x2) (¬x2) 4

3 UPP ¬x3 x1 x2 1 0 4

4 End> ¬x3 x1 x2 1 0 5

2: M = 4. I neither satisfies nor falsifies either P or N, and P|I contains two unit
clauses, namely (x1) and (x2), and the preconditions of the UPP rule are met.

Step 2 According to our heuristic, we choose x1 and propagate it by means of
the UPP rule. I = ¬x3 x1, M remains unaltered. I neither satisfies nor falsifies
either P or N. Both P|I and N|I contain a unit clause each, namely (x2) and (¬x2),
respectively, and the preconditions of UPP and UPN are met.

Step 3 We choose to propagate x2 by means of the UPP rule. I = ¬x3 x1 x2, M
remains unaltered. I satisfies P and falsifies N. Since I contains no decision literals,
the preconditions of both End1 and End0 are met.

Step 4 The search terminates with I = ¬x3 x1 x2 satisfying P and falsifying N
with the application of the End> rule. All variables are assigned a value, M is
increased by 20 = 1, and M = 5 is returned.

To assess the efficiency of an algorithm based on our framework, we use the
number of rules applied as performance measure without counting the initializa-
tion step. The shorter an execution trace results, the better the algorithm performs.
The execution trace of our example has length 4.

We now compare our dual approach with a non-dual one. To this end, let us
consider a #SAT algorithm implementing the rules defined in Abstract #DPLL
(see Section 9.2.4) as well as a rule UP addressing unit propagation. We introduce
the transition relation ;UP.

UP: (P, I, M) ;UPP (P, I `, M) if {`} ∈ P|I

The execution trace of the non-dual algorithm executed on our previous exam-
ple is depicted in Table 9.2.

Step 0 The system is initialized: P ≡ F, I = ε, and M = 0. I neither satisfies nor
falsifies P, and the preconditions of the Dec rule are met.

Step 1 The Dec rule is applied. According to our heuristics, x1 is chosen, set to
1 and appended to I which becomes I = sequencex1

d. The model count remains

9.5 example 55

Table 9.2: Trace of a #SAT algorithm implementing the rules of Abstract #DPLL extended
by unit propagation. I, P|I and M are the working interpretation, formula and
model count, respectively. During execution, I is built according to the DPLL
mechanism. Instead of terminating when I satisfies P, the model count is up-
dated, naive backtracking is applied and the search continues until all decision
literals are worked on.

step rule I P|I M

0 ε (x1 ∨ x3) ∧ (x2 ∨ x3) 0

1 Dec x1
d (x2 ∨ x3) 0

2 Dec x1
d x2

d 1 0

3 NB> x1
d¬x2 (x3) 2

4 UP x1
d¬x2 x3 ∅ 2

5 NB> ¬x1 (x3) ∧ (x2 ∨ x3) 3

6 UP ¬x1 x3 ∅ 3

7 End> ¬x1 x3 ∅ 5

unaltered. I neither satisfies nor falsifies P, and the preconditions of the Dec rule
are met.

Step 2 The Dec rule is applied. According to our heuristics, x2 is chosen, I =
x1

d¬x2, and M remains unaltered. Since I satisfies P and contains two decision
literals, namely x1

d and x2
d, the preconditions of the NB> rule are met.

Step 3 Naive backtracking is applied.The number of unassigned variables amounts
to 1, and the model count is increased by 21 = 2 resulting in M = 2. The value
of the decision literal x2

d is flipped, i.e., x2 = 0, and x2 is turned into a propaga-
tion literal. I = x1

d¬x2 neither satisfies nor falsifies P. Since P|I contains the unit
clause (x3), the preconditions of the UP rule are met.

Step 4 Unit propagation is applied by setting x3 to 1. I = x1
d¬x2 x3, and P|I = 1. I

satisfies P and still contains a decision literal, namely x1
d, hence the preconditions

of the NB1 rule are met.

Step 5 Naive backtracking is applied. All variables were assigned a value, and
the model count becomes M = 3. I = ¬x1 neither satisfies nor falsifies P, and P
contains the unit clause (x3). The preconditions of the UP rule are met.

Step 6 The UP rule is applied by propagating x3. The working interpretation
becomes I = ¬x1 x3. It satisfies P and contains no decision literal meeting the
preconditions of the End1 rule.

Step 7 The execution terminates with I = ¬x1 x3 satisfying P. The number of
unassigned variables is 2, and M = 3 + 2 = 5 is returned.

The execution trace has length 7. We show that its length depends on the de-
cision heuristics applied. Let the order in which the decision literals are chosen
be reversed. Then, in Step 1, x3 is chosen as decision literal. After backtracking in
Step 2, x3 is set to ⊥ and P|I = (x1)∧ (x2). In Step 3, x2 is propagated by means of
the UP rule, and P|I = (x1). In Step 4, UP is applied and x2 propagated, resulting
in P|I = ∅. The execution terminates in Step 5 with the application of the End1
rule, and M = 5 is returned. The execution trace has length 5.

56 paper 1 : an abstract dual propositional model counter

9.6 conclusion and future work

The problem #SAT of determining the number of models of a propositional for-
mula has many real-world applications. In this work, we have presented a for-
mal framework describing a #SAT solving procedure based on DPLL, called Ab-
stract Dual #DPLL, including a formalization of a non-dual variant, called Ab-
stract #DPLL, and argued that our framework is sound. The Abstract Dual #DPLL
procedure is given by 5 simple rules which specify the decide and naive backtrack-
ing mechanisms. The application of chronological backtracking underlying naive
backtracking and the framework’s compactness facilitate the investigation of the
main idea, namely to consider a formula and its negation simultaneously in #SAT
solving. We demonstrated the working of Abstract Dual #DPLL on an example
assuming an implementation enhanced by unit propagation and compared it do
a non-dual algorithm based on Abstract #DPLL enhanced by unit propagation as
well. The dual algorithm performed better,i. e., less rules were executed. This is
due to the fact that in Step 1 unit propagation can be executed on N|I , whereas in
the non-dual version, a decision has to be taken. For every decision, at a later time
point backtracking occurs. This results in a longer execution trace. In this example,
the performance of the dual version does not depend from the decision heuristics
applied, contrarily to the non-dual version.

Today, several #SAT solvers are available. They implement various strategies,
however, to our best knowledge, no dual approach has been presented yet. We im-
plemented our framework in SWI-Prolog, and first experiments on small crafted
formulae are encouraging. An interesting question is whether by Abstract Dual
#DPLL state-of-the-art #SAT solvers can be modeled. relsat v2.00 [15] is based
on DPLL, but contrarily to our framework splits the formula under consideration
into subformulae over disjoint variable sets. At present, we can not model #SAT
solving procedures making use of backjumping or CDCL, such as Cachet [172],
since non-chronological backtracking and clause learning are not supported. The
performance gain of some modern #SAT solvers is due to improved data struc-
tures. This aspect is not covered by our framework as we focus on algorithms. In
order to model countAtom [37], our framework should be extended to support
parallelization.

For the sake of simplicity we assume that we are given two formulae P and N
over the same set of variables which are duals of each others, e.g., models of P fal-
sify N and vice versa. This assumption is rather strong unless we allow additional
variables, e.g., Tseitin variables, to encode negation [192]. Let F be an arbitrary
formula over variables V. We denote with T(F) the Tseitin transformation of F.
The models of T(F) projected onto V are exactly the models of F. Therefore, our
approach can be generalized to the situation in which N contains, e.g., Tseitin
variables, by projecting the models of N onto the variables occurring in P.

As future work, we will make our soundness arguments more precise and in-
vestigate completeness. We also plan a more extensive experimental evaluation
and a detailed comparison of our dual approach with non-dual methods. We in-
tend to extend our work to the case where the formula under consideration and its
negation communicate over “inputs” by allowing, e.g., Tseitin variables. Finally, by
extending our framework to model strategies implemented in state-of-the-art SAT
solvers, such as conflict-driven clause learning (CDCL) [128], we want to combine
the strengths of duality of our Abstract Dual #DPLL with the strength of mod-
ern SAT solvers to obtain a state-of-the-art model counting framework.

10
D I S C U S S I O N O F PA P E R 1

In Section 10.1, the main contributions are emphasized. We assume the input for-
mula and its negation be defined over the same set of variables. Consequently,
their residuals under a given trail are correlated (Section 10.2). Our framework
allows for computing the models and the model count of the input formula con-
sidering exclusively its negation. We provide an example (Section 10.3), and finally
in Section 10.4 we show how the models of a propositional formula can be com-
puted by means of Abstract Dual #DPLL and provide an example.

10.1 main contributions

This paper presents two major contributions with potential to speed up model
counting. First, as we saw in Section 9.5, unit propagation in the negation of the
input formula saves decisions. In our example this fact did not come out clearly,
and we want to catch up on this by a simple example.

Example 10.1 (Dual reasoning saves decisions). Consider the propositional formula
F = (x1 ∨ . . . ∨ xn) defined over the set of variables V = {x1, . . . , xn}.1 It is already
in CNF, therefore we set P = F. We assume the variables to be ordered in ascending
order with respect to their index, i. e., x1 < . . . < xn, and to assign decision literals
the value 1. In non-dual mode, we take the decision x1

d, which is a partial model of F
representing 2n−1 total models of F. We backtrack chronologically and flip x1

d, i. e., set x1
to 0. The residual of P under ¬x1 is P|¬x1 = (x2 ∨ . . . ∨ xn). It is undefined, and we take
the decision x2

d, which again satisfies F and represents 2n−2 total models of F, followed
by flipping x2

d and repeating these steps until finally xn can be propagated. The negation
of F is ¬F = (¬x1) ∧ . . . ∧ (¬xn). It is already in CNF, therefore we set N = ¬F.
Obviously, the formula N can be solved using only unit propagation. In dual mode, we
first propagate ¬x1 by means of rule UPN and find 2n−1 models. We then propagate ¬x2
finding 2n−2 models and continue until all unit literals have been propagated.

Second, dual reasoning enables finding partial models on the fly without the
need for exploring and shrinking total models. Modern SAT solvers on the one
hand usually only detect total models. On the other hand, they are able to detect
partial assignments falsifying the formula in question. By considering the nega-
tion of the input formula, we exploit this fact: Assume a partial assignment sat-
isfies the input formula. Necessarily unit propagation has been carried out until
completion. A state-of-the-art SAT solver extends this partial assignment to a to-
tal satisfying assignment without encountering a conflict. This is computationally

1 The notation coincides with the one introduced in Part II: variables and literals are denoted by
lowercase letters, possibly with subscripts, the empty clause is denoted by 0 and the empty CNF
formula by 1, 0 denotes ⊥, 1 denotes >, and xd denotes the decision ẋ.

57

58 discussion of paper 1

Table 10.1: Trace of Abstract Dual #DPLL with unit propagation finding partial models.

step rule I P|I N|I M

0 ε P N 0

1 Dec ad (¬c) ∧ (¬d) ∧ (b ∨ ¬c) ∧ (b ∨ ¬d) (c ∨ d) 0

2 UPP ad¬c (¬d) ∧ (b ∨ ¬d) (d) 0

3 UPP ad¬c¬d 1 0 0

4 NB> ¬a (b ∨ ¬c) ∧ (b ∨ ¬d) (¬b) ∧ (c ∨ d) 2

5 UPN ¬a¬b (¬c) ∧ (¬d) (c ∨ d) 6

6 UPP ¬a¬b¬c (¬d) (d) 6

7 UPN ¬a¬b¬cd 0 1 7

8 End⊥ ¬a¬b¬cd 0 1 7

less expensive than checking whether the partial assignment satisfies the input
formula, and it makes sense in SAT solving.2 In #SAT, however, the search space
need be processed exhaustively, and more expensive techniques might pay off.

10.2 correlation of the residuals

In our paper we assume that P and N are computed from F and ¬F without
introducing auxiliary variables. This is a rather strong assumption and leads to
two observations: First, P and N might be exponentially larger than F and ¬F.3

Second, we distinguish three cases, given a (possibly partial) trail I: 1) P|I = 1
and 0 ∈ N|I , 2) 0 ∈ P|I and N|I = 1, 3) both P|I and N|I are undefined. This be-
havior was already observed in the example in Section 9.5 and holds in general for
Abstract Dual #DPLL. This is no coincidence but an obvious consequence of the
fact that var(P) = var(N), and that N and P are the negation of each other. How-
ever, Abstract Dual #DPLL enables the detection of partial models demonstrated
by the following example, which also shows the correlation of P|I and N|I .

Example 10.2 (Correlation of P|I and N|I in Abstract Dual #). Let V = {a, b, c, d} be
a set of propositional variables and F = (¬a∧ b)∨ (¬c∧¬d) be an arbitrary formula de-
fined over V. Its CNF transformation is obtained by applying the distributivity laws and is
given by P = P1 ∧ P2 ∧ P3 ∧ P4 = (¬a ∨ ¬c) ∧ (¬a ∨ ¬d) ∧ (b ∨ ¬c) ∧ (b ∨ ¬d). The
negation of F is already in CNF, and N = N1 ∧N2 = (a∨¬b)∧ (c∨ d). The total models
of F are ab¬c¬d, a¬b¬c¬d, ¬abcd, ¬abc¬d, ¬ab¬cd, ¬ab¬c¬d, and ¬a¬b¬c¬d,
and #F = 7. The execution steps are listed in Table 10.1. After deciding a (step 1) and
propagating ¬c with reason P1 (step 2) and ¬d with reason P2 (step 3), the residual of P
under the resulting trail ad¬c¬d becomes empty and a conflict in N occurs. The detected
model is partial and represents two total models. The model count is updated, the model
counter backtracks and flips the most recent decision ad (step 4). After backtracking, we
have I = ¬a, and both P|I and N|I are undefined, but N|I contains the unit clause (¬b).
Propagating ¬b with reason N1 results in the trail ¬a¬b in which two variables are
unassigned. It represents four total assignments, and their count is summed up to the

2 The SMT solver SPASS-SATT [33, 34] implements clause watching. It executes satisfiability checks
before taking a decision and is therefore able to detect partial models.

3 This issue is solved in Chapter 11.

10.3 model counting using only the negated formula 59

Table 10.2: Execution steps for Abstract Dual #DPLL considering only the negated for-
mula.

step rule I N|I M detected model

0 ε (a ∨ ¬b) ∧ (c ∨ d) 0

1 Dec ad (c ∨ d) 0

2 Dec ad cd 1 0

3 NB⊥ ad¬c (d) 0

4 UPN ad¬cd 1 2 m1 = a¬c¬d
5 NB⊥ ¬a (¬b) ∧ (c ∨ d) 2

6 UPN ¬a¬b (c ∨ d) 6 m2 = ¬ab
7 Dec ¬a¬bcd 1 6

8 NB⊥ ¬a¬b¬c (d) 6

9 UPN ¬a¬b¬cd 1 7 m3 = ¬a¬b¬c¬d
10 End⊥ ¬a¬b¬cd 1 7

model count M (step 5). After propagating ¬c with reason P3 (step 6) and d with rea-
son N2 (step 7), a conflict in N occurs and the resulting trail satisfies P. The trail contains
no decisions and represents a total model of F, and the search terminates with M = 7.

10.3 model counting using only the negated formula

The strength of our dual approach lies in the fact that in some cases we may
choose whether to execute a rule in P or in N. Obviously, one would apply unit
propagation as long as possible, in whichever formula the unit occurs. While it is
obviously not optimal, as we will show in Example 10.3, it is interesting to notice
that the models of F can also be counted by considering only N and the rules Dec
and UPN as well as NB>, NB⊥, End>, and End⊥. The formulation of variants
of the termination and backtracking rules neglecting P and the according state
representation are straightforward, and to keep the presentation short, we refrain
from providing them. Also, our rules do not prioritize rule execution in P over
rule execution in N. Therefore, the rule set need not be adapted, and neither does
the representation of the state. It suffices to ignore the conditions on P.

Example 10.3 (Consider only the negated formula in Abstract Dual #DPLL.). Con-
sider again Example 10.2, where F = (¬a ∧ b)∨ (¬c ∧¬d), which is defined over the set
of variables V = {a, b, c, d}, and N = N1 ∧ N2 = (a ∨ ¬b) ∧ (c ∨ d). We only consider
the rules Dec and UPN as well as NB>, NB⊥, End>, and End⊥ restricted as described
above. The execution steps are listed in Table 10.2. Ignore the last column for now, we will
come back to it in Section 10.4 and Example 10.4.

After deciding a (step 1) and c (step 2), a model of F is found. Backtracking occurs
and the decision cd is flipped (step 3) upon which the literal d is propagated with rea-
son N2 (step 4). The trail ad¬cd represents two total assignments, and M is incremented
by 2. The trail also satisfies N, i. e., it is a counter-model of F. Backtracking occurs (step 5),
followed by propagating ¬b with reason N1. The resulting trail ¬a¬b represents four total
assignments, and M is incremented by four (step 6). The residual of N under the current
trail contains no unit, a decision is taken (step 7), and N is satisfied. After backtrack-

60 discussion of paper 1

ing (step 8) and propagation of d with reason N2, the trail ¬a¬b¬cd represents one total
assignment, and M is incremented by one. The trail satisfies N, and since it contains no
decision, the computation terminates with M = 7.

The execution in Table 10.2 considering only N requires more steps than the
execution taking into account both P and N in Table 10.1. This behavior was to
be expected, since—just like in non-dual counting—the model counter can not
exploit the presence of units in P|I . It has to take a decision and to flip it later.

While we are interested in finding conflicts in N, unit propagation in N tries to
extend the current trail to a model of N. If we would decide the negation of this
unit, we would immediately obtain a conflict. Notice that we can not propagate
the negation of a unit in N, because N contains no reason for it. By propagating
the unit and counting the number of models we would find if we would decide
its opposite value and backtrack, this work is saved.

10.4 computing models

In Abstract Dual #DPLL, we count the models of a propositional formula. How-
ever, we can also compute them: If the current trail I satisfies P, the model is I.
Similarly, if I falsifies N, it is a counter-model of ¬F and hence a model of F. The
interesting case is unit propagation in N by means of the UPN rule: when prop-
agating a literal ` in N|I , we count the models we would have found if we had
decided ¬`, obtained a conflict in N|I¬`d , and backtracked chronologically. There-
fore, these models are all total extensions of I¬`. The discussion in Section 9.3 and
the definition given in Equation 9.2 led to rule UPN.

Example 10.4 (Computing models in Dual Abstract #DPLL). Consider again Ex-
ample 10.3, where F = (¬a ∧ b) ∨ (¬c ∧ ¬d) and V = {a, b, c, d}. The last column
of Table 10.2 contains the (implicitly) detected models. Notice that we do not enumerate
them, but the rules of Abstract Dual #DPLL can be adapted accordingly. It can easily be
verified that m1 = a¬c¬d counted in step 4 is a model of F. It is a partial model and
represents two total models, namely ab¬c¬d and a¬b¬c¬d. Also m1 = ¬a¬b counted
in step 6 satisfies F. It represents four total models, namely ¬abcd, ¬abc¬d, ¬ab¬cd,
and ¬ab¬c¬d. Finally, m3 = ¬a¬b¬c¬d is a total model of F. A comparison with
Example 10.2 confirms that all models of F have been found.

11
PA P E R 2 : D U A L I Z I N G P R O J E C T E D M O D E L C O U N T I N G

published. In: IEEE 30th International Conference on Tools with Artificial Intelli-
gence, ICTAI 2018, 5–7 November 2018, Volos, Greece. Ed. by Lefteri H. Tsoukalas,
Éric Grégoire, and Miltiadis Alamaniotis. IEEE, 2018, pp. 702–709. doi: 10.1109/
ICTAI.2018.0011.

authors . Sibylle Möhle and Armin Biere.

acknowledgments . Supported by the Austrian Science Fund (FWF) grant
S11408-N23 (RiSE).

abstract. In many recent applications of model counting not all variables are
relevant for a specific problem. For instance redundant variables are added during
formula transformation. In projected model counting these redundant variables
are ignored by projecting models onto relevant variables. Inspired by dual prop-
agation which has its origin in solving quantified Boolean formulae and jointly
works on both the original formula and its negation, we present a novel calculus
for dual projected model counting. It allows to capture existing techniques such
as blocking clauses, chronological as well as non-chronological backtracking, but
also introduces new concepts including discounting and dual conflict analysis to
obtain partial models. Experiments demonstrate the benefit of our approach.

11.1 introduction

Classical applications of #SAT, the task of counting the models of a propositional
theory, are found in the area of probabilistic reasoning [167] adopted in, e.g.,
medical diagnosis and planning. Further application scopes encompass circuit de-
sign [36] and quantitative information flow analysis [26] as well as differential
cryptanalysis [106]. In product configuration, the number of valid configurations
under given preconditions might be of interest [110]. For some tasks not all con-
figuration options might be relevant, thus only the models projected onto the rel-
evant variables are counted [203]. Projected models may be required in planning
as well [10, 202]. The task of projected model counting is also referred to as #∃SAT,
since the main idea of projection is to existentially quantify the irrelevant variables,
i.e., the variables which are to be discarded. In this sense, #SAT is a special case
of #∃SAT, namely the one in which the set of irrelevant variables is empty [202].

Particular challenges in model counting. In propositional model counting, contrar-
ily to SAT solving, the search does not terminate after the detection of a model.
Instead, the search space needs to be explored exhaustively. Conflict Driven Clause

61

https://doi.org/10.1109/ICTAI.2018.00111
https://doi.org/10.1109/ICTAI.2018.00111

62 paper 2 : dualizing projected model counting

Learning (CDCL) [128, 146] provides efficient means to deal with conflicting as-
signments, but a comparable method for handling satisfying assignments is still
not available. Some state-of-the-art #SAT solvers prune the search space upon find-
ing a satisfying assignment by adding blocking clauses with the aim to prevent
multiple model counts [104]. An apparent drawback of this approach is a sub-
stantial growth of the formula since these blocking clauses are irredundant and
therefore must not be deleted. This issue is addressed in [94], a solver for projected
model enumeration working without blocking clauses, and in [84] where blocking
clauses are eagerly deleted and the number of kept blocking clauses is at any time
limited to be at most linear in the number of relevant variables. Although devised
for projected answer set enumeration, this method is readily applicable for #∃SAT.
The addition of large clauses may furthermore slow down the solver. On this
account, in #CLASP [10] the blocking clauses are minimized which on the one
hand reduces their count and on the other hand prunes a larger portion of the
search space. To detect partial models, the DPLL-based model counter CDP [27]
performs satisfiability checks on the residual of the formula. This is not the case
in state-of-the-art SAT solvers which only keep track of the assigned variables.
From a complexity point of view this makes sense in SAT, since a satisfying as-
signment can always be extended to a total model by a number of decisions linear
in the variable count and thus compensates for the overhead introduced by, e.g.,
clause watching. In contrast, detecting partial models and subsequent pruning of
the search space leads to a higher performance gain in #SAT, hence more compu-
tational effort may be invested. For the same reason, more involved preprocessing
techniques are justified in model counting [115].

Our motivation. Inspired by [72], Abstract Dual #DPLL [24] was developed with
the aim to investigate the suitability of a dual approach for exact model counting
as an alternative to component analysis [15, 173, 189] which can be considered the
state of the art in exact #SAT solving. One objective of our work presented here is
to extend this approach to facilitate projected model counting. A second goal is to
incorporate methods which are widely used in state-of-the-art SAT solvers. Our
third goal is to investigate the impact of a dual approach on the performance of a
non-dual method. We only partially consider preprocessing [65, 115] in this work,
but plan to further investigate its applicability in a dual setting and to develop
adequate methods in the future.

Our contribution. In this work we present the first dual calculus addressing pro-
jected exact unweighted model counting. First, we present a dual representation
of the formula under consideration which facilitates the detection of partial mod-
els and subsequent pruning of the search space. Our method incorporates “good
learning” and is exempt from satisfiability checks and clause watching mecha-
nisms. This results in a significant performance gain compared to the non-dual
variant of the same algorithm which finds only total models. Second, our calculus
takes an arbitrary formula or a circuit as argument and returns the correct model
count even if for its transformation into CNF techniques are adopted which in gen-
eral do not preserve the model count, such as the Plaisted-Greenbaum transforma-
tion [164]. Third, we introduce a novel technique based on flipping and discounting
which prevents multiple model counts without the use of blocking clauses. Our
calculus models techniques implemented in state-of-the-art SAT solvers, such as
conflict analysis and conflict-driven backjumping. Finally, we provide a robust and
carefully tested implementation Dualiza of our calculus.

11.2 preliminaries 63

$ cat clause.form

a | b | c | d

$ dualiza -e clause.form

ALL SATISFYING ASSIGNMENTS

d

c !d

b !c !d

a !b !c !d

$ dualiza clause.form

NUMBER SATISFYING ASSIGNMENTS

15

$ dualiza clause.form -l | grep RULE

c LOG 1 RULE UNX 1 -4

c LOG 1 RULE UNX 2 -4

c LOG 1 RULE BN0F 1 -4

c LOG 2 RULE UNX 3 -3

c LOG 2 RULE BN0F 2 -3

c LOG 3 RULE UNX 4 -2

c LOG 3 RULE BN0F 3 -2

c LOG 3 RULE UP 1 1

c LOG 3 RULE EP1 1

Figure 11.1: On the left hand side of the figure our implementation Dualiza is applied to
a simple example consisting of a single clause. The “log” output on the right
hand side demonstrates that in dual mode this example is solved in essence
by just dual propagation (UNX) (see Section 11.6 for details).

In Figure 11.1 we provide a simple example to highlight the power of dual
projected model counting. More details are discussed in Section 11.6.

The paper is organized as follows: In Section 11.2, we discuss basic concepts.
Section 11.3 introduces the concept of duality and our new duality property. Our
calculus is presented in Section 11.4 on which our implementation described in
Section 11.5 is based. After experiments in Section 11.6, we discuss related work
in Section 11.7 before we conclude in Section 11.8.

11.2 preliminaries

Let F be an arbitrary (propositional) formula over variables Z, interpreted over
Boolean constants B = {0, 1}. Further assume Z to be partitioned into the set
of relevant input variables X and the set of irrelevant input variables Y. We denote
with inputs the variables contained in either X or Y. A total assignment σ : Z → B

maps Z to the truth values 1 and 0 and can be applied to F to yield a truth
value σ(F) ∈ B, also written F|σ. A relevant input assignment is defined on X and
undefined elsewhere. Similarly, an irrelevant input assignment is defined. This lets
us decompose any total σ = σX ∪ σY into its relevant σX and irrelevant σY part. We
use F(U), or equivalently var(F) ⊆ Z, to denote that F only depends on (contains)
a subset U ⊆ Z of all variables and write F(X, Y) if F is defined over X ∪Y.

We count the number of satisfying assignments of F(X, Y) projected onto the
relevant variables X, defined as

#∃Y . F(X, Y) = |{τ : X → B | exists σ : Z → B with

σ
(

F(X, Y)
)
= 1 and τ = σX}|.

Thus #SAT turns out to be the special case where Y = ∅.
In order to make use of sophisticated data structures and algorithms used in

modern SAT solvers we further consider propositional formulae in CNF and thus
for instance apply Tseitin transformation [192] on F to obtain a CNF representation
P(X, Y, S) of F depending on X and Y as well as on variables S introduced by the
transformation. Note that, even though the Tseitin encoding is only satisfiability-
preserving, i.e., the result is not logically equivalent, it does preserve the number
of models, assuming all inputs are relevant. The models of F projected onto X are

64 paper 2 : dualizing projected model counting

exactly the models of its Tseitin representation ∃S . P(X, Y, S) projected onto X,
and

#∃Y, S . P(X, Y, S) = #∃Y . F(X, Y).

Our approach uses two formulae to capture the projected model counting problem.
The primal formula P(X, Y, S) ranges over the inputs X and Y and the primal vari-
ables S, while the dual formula N(X, Y, T) ranges over the same inputs X and Y
but also over the dual variables T instead of the primal variables S. The idea is
that N is the “negation” of F, and hence of P, which is easy to achieve by encod-
ing the negation of F using Tseitin variables. The precise condition is discussed
further down. In line with the definition of an assignment, a primal assignment σS
and a dual assignment σT are defined. This extends our notion of total assignment
to σ = σX ∪ σY ∪ σS ∪ σT over variables V = X ∪Y ∪ S ∪ T.

A CNF F over V is a conjunction of clauses and each clause is a disjunction of
literals. A literal ` is either a variable v ∈ V or its negation ¬v. In both cases we
write var(`) = v and extend this notion to sequences and sets of literals as well
as formulae. We also use ` = ¬` and assume ¬¬` = `. We also write C ∈ F
if C is a clause of F and similarly ` ∈ C. A sequence I = `1 · · · `n of literals with
mutually exclusive variables (var(`i) 6= var(`j) for i 6= j) is called a trail. Trails
can be concatenated, I = I′ I′′, assuming the variables in I′ and I′′ are distinct. We
also use ` ∈ I, treating I as set of literals, and in particular define X − I = X −
var(I) ⊆ X, the subset of variables of X not in I. These trails are also interpreted
as partial assignments with I(`) = 1 iff ` ∈ I. Thus I(`) = 0 if ` ∈ I and I(`) is
undefined if var(`) 6∈ var(I). This gives the useful shortcut 2|X−I| to denote the
number of (total) relevant input assignments covered by the partial assignment
represented by the trail I. We denote the projection of I onto X by π(I, X) and
consider it also a conjunction of literals. The residual of F with respect to I, denoted
by F|I , is obtained by replacing in F the literals occurring in I by their truth value. I
satisfies F, denoted by I |= F, if F|I = ∅. Trail I falsifies F if it contains the empty
clause, i.e., ∅ ∈ F|I .

We are going to present a proof calculus in the style of DPLL(T) [155] and
will also include elements of CDCL formalized in [97]. Proof rules model state
transitions of an abstract projected model counting DPLL / CDCL solver.

Besides primal and dual formulae, the main ingredient of an abstract state is
a trail which, as discussed above, captures the current partial assignment and in
addition marks some of its literals ` as decision literals, using the notation `d.
These denote open “left” (or “first”) branches in the sense of DPLL.

We also mark literals ` starting a “right” (or “second”) branch with an f fol-
lowed by the number of models found at the corresponding decision level in
parenthesis, i.e., ` f (m). The idea is that after closing the left branch of a decision
its decision literal `d becomes a flipped literal `

f (m)
starting the right branch of that

decision maintaining its decision level dl(`). We denote the set of decision literals
in I by decs(I) and interpret it as a conjunction of literals where appropriate. In
an analogous manner, we represent the set of flipped literals in I by flips(I) and
the set of unit literals in a residual G|I of a formula G w.r.t. I by units(G|I).

Backjumping involves the addition of redundant clauses which may be deleted
anytime. We mark redundant clauses with an r, writing Cr, to distinguish them
from blocking clauses which prevent multiple model counts and therefore have to
be retained until the end of the procedure.

11.3 duality 65

11.3 duality

In propositional model counting the search space needs to be processed exhaus-
tively. In this sense #SAT exhibits a certain analogy to QBF solving where, due
to the existence of universal quantifiers in the formula, the complete search space
needs to be traversed.

To overcome this limitation, dual propagation was introduced for circuits in [91]
and adapted to CNF-based QBF solving in [93]. This work inspired our abstract
framework developed with focus on DPLL [24]. In the work reported here, we
extend this approach in two ways: first by projection and second by elements
of CDCL.

Let F(X, Y) be an arbitrary (propositional) formula and our task is to compute
the number of models of F projected onto X. Following the concepts introduced
in Section 11.2, we compute a dual representation of F consisting of two CNF for-
mulae P(X, Y, S) and N(X, Y, T). Recall that P and N encode F and its negation,
respectively.

Our model counter executes a dual variant of CDCL on P and N simultaneously
and maintains a single trail I with var(I) = X ∪ Y ∪ S ∪ T. The input variables
in X and Y are shared by P and N and are called shared variables. They may be
propagated in either formula [91].

Basic idea. Every trail I either satisfying P or falsifying N is a (partial) model
of F and represents 2|X−I| total models of F projected onto X. In contrast, no model
of F can be computed if I falsifies P. Obviously, the same holds if I satisfies N but
due to the structure of I this situation will never arise in our framework as will be
clarified further down. Conflict analysis is performed after a conflict is detected,
and backtracking occurs upon either a conflict or the detection of a model of F.
If I is a partial assignment, backtracking prunes a potentially large portion of the
search space. The procedure terminates as soon as the complete search space has
been processed.

Thus in our approach we assume F(X, Y) is represented by a pair of dual for-
mulae satisfying the following definition.

Definition 11.1 (Combined Formula Pair). A combined formula pair of a formula
F(X, Y) consists of formulae P(X, Y, S) and N(X, Y, T) meeting the following conditions:

∃ S . P(X, Y, S) ≡ F(X, Y) (11.1)

∃ T . N(X, Y, T) ≡ ¬F(X, Y) (11.2)

where X, Y, S and T are pairwise disjoint sets of variables. We denote a combined formula
pair of F(X, Y) by [P(X, Y, S) ‖ N(X, Y, T)](F) or [P ‖ N](F).

Definition 11.1 essentially states that F and P are semantically equivalent, i.e.,
have the same models, upon projection onto X ∪Y and that the same holds for ¬F
and N.

As a consequence, if P and N are a combined formula pair of F, for every total
assignment σ of X and Y it holds that σ(∃S . P(X, Y, S)) 6= σ(∃T . N(X, Y, T)).

Definition 11.2 (Duality Property). Let X, Y, S and T be pairwise disjoint sets of
variables. Two formulae G(X, Y, S) and H(X, Y, T) comply with the duality property,
if

∀X, Y . ((∃ S . G(X, Y, S))⊕ (∃ T . H(X, Y, T))) (11.3)

where “⊕” denotes “exclusive or (XOR)”.

66 paper 2 : dualizing projected model counting

Lemma 11.1. The duality property holds for a combined formula pair
[P(X, Y, S) ‖ N(X, Y, T)](F).

Consider an assignment I (trail) with P(X, Y, S)|I′ |= I for I′ = π(I, X ∪Y),
which for instance holds if variables in X and Y are the only decisions in I and
the rest of I is obtained through unit propagation in P. Then the dual property in
Equation 11.3 continues to hold for residuals w.r.t. I:

∀X, Y . ((∃ S . P(X, Y, S)|I)⊕ (∃ T . N(X, Y, T)|I)) (11.4)

This property provides the most important invariant for our calculus discussed in
the next section, but requires that we split on X and Y variables first.

In general, we assume that only Equation 11.3 holds for P and N, without nec-
essarily requiring that there exists an F satisfying Definition 11.1. In this situation,
even after assigning X and Y and performing unit propagation, there might still be
an unassigned variable s ∈ S left. Assume we extend the trail with the decision `
with var(`) = s. At this point the dual property (Equation 11.4) might seize to hold,
since the value picked for s may lead to an unsatisfiable residual P(X, Y, S)|I` even
if P(X, Y, S)|I` is satisfiable, thus both ∃ S . P(X, Y, S)|I` and ∃ T . N(X, Y, T)|I` are
false.

For correctness it is sufficient to first split on relevant variables X, followed by
irrelevant variables Y and primal variables S, but never split on dual variables T.
This splitting order maintains the following direction (Equation 11.5) of the dual
property (Equation 11.4) on residuals, namely that a conflict in N guarantees that
all extensions to the current assignment to relevant variables in X can be extended
to total models of P:

∀X, Y . ((¬∃ T . N(X, Y, T)|I)→ (∃ S . P(X, Y, S)|I)) (11.5)

A formal proof of this invariant and accordingly the correctness of our calculus
is out of scope of this paper. For now we rely on extensive testing and thus an
empirical justification.

11.4 calculus

We describe the framework of our calculus by a labeled state transition system
〈S, L,;, s0〉 with set of states S, set of labels L and transition relation ;⊆ S×S.
Intermediate states are of the form (P, N, I, M) where P(X, Y, S) and N(X, Y, T)
are a combined formula pair of F(X, Y), I is a trail with var(I) ∈ X ∪ Y ∪ S ∪ T
and M ∈ N. The initial state is defined by s0 = (P, N, (), 0) with () denoting
the empty trail. The terminal state is M ∈ N representing #∃Y . F(X, Y). The tran-
sition relation ; is defined as the union of transition relations ;l with l ∈ L.
The labels indicate the action taken (1st letter), to which formula or variable set
it is applied (2nd letter), whether it is triggered by a satisfying or falsifying as-
signment (3rd letter) and whether a blocking clause is learned or flipping is ap-
plied (4th letter). The rules are listed in Figure 11.2.

Terminate search. The search terminates as soon as I either satisfies or falsifies
either P or N and the relevant search space has been traversed exhaustively. If I
falsifies P, π(I, X) can not be extended to a model of ∃Y . F(X, Y), and M remains
unaltered (EP0). Requiring that no decision literals are left on the trail ensures that
no models are missed due to a “wrong” assignment of variables in S. If I either
satisfies P or falsifies N, π(I, X) can be extended to 2|X−I| models of ∃Y . F(X, Y),

11.4 calculus 67

EP0 : (P, N, I, M) ;EP0 M if ∅ ∈ P|I and decs(I) = ∅

EP1: (P, N, I, M) ;EP1 M + 2|X−I| if P|I = ∅ and

var(decs(I)) ∩ X = ∅

EN0: (P, N, I, M) ;EN0 M + 2|X−I| if ∅ ∈ N|I and

var(decs(I)) ∩ X = ∅

BP0F: (P, N, I `d I′, M) ;BP0F (P, N, I `
f (m′)

, M) if ∅ ∈ P|I ` I′ and

var(decs(I′)) = ∅ and m′ = ∑ {m | ` f (m) ∈ I′}

JP0: (P, N, I I′, M) ;JP0 (P ∧ Cr, N, I `′, M−m′) if ∅ ∈ P|I I′ and

P |= C and C|I = {`′} and m′ = ∑ {m | ` f (m) ∈ I′}

BN0F: (P, N, I `d I′, M) ;BN0F (P, N, I `
f (m′+m′′)

, M + m′′) if

∅ ∈ N|I ` I′ and var(`) ∈ X and var(decs(I′)) ∩ X = ∅ and

m′ = ∑ {m | ` f (m) ∈ I′} and m′′ = 2|X−I`I′|

BN0L: (P, N, I `d I′, M) ;BN0L (P ∧ D, N, I `, M + m′′) if ∅ ∈ N|I ` I′ and

var(`) ∈ X and var(decs(I′)) ∩ X = ∅ and m′′ = 2|X−I`I′| and

D = π(¬decs(I`), X)

BP1F: (P, N, I `d I′, M) ;BP1F (P, N, I `
f (m′+m′′)

, M + m′′) if

P|I ` I′ = ∅ and var(`) ∈ X and var(decs(I′)) ∩ X = ∅ and

m′ = ∑ {m | ` f (m) ∈ I′} and m′′ = 2|X−I`I′|

BP1L: (P, N, I `d I′, M) ;BP1L (P ∧ D, N, I `, M + m′′) if P|I ` I′ = ∅ and

var(`) ∈ X and var(decs(I′)) ∩ X = ∅ and

m′′ = 2|X−I`I′| and D = π(¬decs(I`), X)

(a) End and backtracking rules.

Figure 11.2: The complete set of rules of our framework, where P(X, Y, S) and N(X, Y, T)
form a combined formula pair of F(X, Y), and I denotes the trail over vari-
ables X ∪ Y ∪ S ∪ T. The rules cover termination (rule name starting with
E), chronological and non-chronological backtracking (B and J), decisions (D)
and unit propagation (U) as well as clause forgetting (F). They may be applied
either to P or N (P or N) and triggered by a falsifying (0) or satisfying (1) as-
signment. Letters X, Y, S and T denote the variable sets the rules are applied
to (X, Y, S and T). Finally, either a blocking clause may be learned (L) or
flipping is applied (F). Blocking clauses are added to P only and thus fail to
prevent multiple model counts if a model is found due to a conflict in N. We
therefore disallow the combination of blocking clauses and dual reasoning.
Discounted models might not be detected again if they are subsumed by a
blocking clause recorded previously. We therefore also disallow the combina-
tion of discounting and blocking clauses. For more details including examples
we refer to paragraphs Blocking clauses in dual mode and Combining blocking
clauses and discounting in Section 11.4.

68 paper 2 : dualizing projected model counting

DX: (P, N, I, M) ;DX (P, N, I `d, M) if ∅ 6∈ (P ∧ N)|I and

units((P ∧ N)|I) = ∅ and var(`) ∈ X− I

DYS: (P, N, I, M) ;DYS (P, N, I `d, M) if ∅ 6∈ (P ∧ N)|I and

units((P ∧ N)|I) = ∅ and var(`) ∈ (Y ∪ S)− I and X− I = ∅

UP: (P, N, I, M) ;UP (P, N, I `, M) if {`} ∈ P|I

UNXY: (P, N, I, M) ;UNXY (P, N, I `
d
, M) if {`} ∈ N|I and

var(`) ∈ X ∪Y and ∅ 6∈ P|I and units(P|I) = ∅

UNT: (P, N, I, M) ;UNT (P, N, I `, M) if {`} ∈ N|I and

var(`) ∈ T and ∅ 6∈ P|I and units(P|I) = ∅

FP: (P ∧ Cr, N, I, M) ;FP (P, N, I, M) if ∅ 6∈ P|I

(b) Decision and unit propagation and forgetting rules.

Figure 11.2: The complete set of rules of our framework (cont.).

and M is updated accordingly (EP1 and EN0). Requiring that no relevant decision
literal is left on the trail is sufficient since in the presence of irrelevant or primal
decision literals all relevant variables are assigned. Flipping an irrelevant or primal
decision literal therefore would yield redundant models w.r.t. projection onto X.

Backtracking. If the partial interpretation represented by the trail falsifies P, the
solver may backtrack chronologically and turn the last decision literal `d into a

flipped decision literal `
f (m)

where m equals the number of models detected at
decision level > dl(`). This model count is obtained by summing up the model
counts assigned to the flipped decision literals with decision level higher than dl(`)
while M remains unaltered (BP0F). Alternatively, a redundant clause may be
learned which becomes unit for I, the solver backtracks non-chronologically and
propagates this new unit literal. Backjumping involves discarding the models
found in I′, hence their count is subtracted from M to prevent multiple counts
when they are found again (JP0). If the partial interpretation represented by the
trail falsifies N, its projection onto X can be extended to a model of F, and M is
incremented by the number of total models projected onto X represented by the
trail. Flipping the last irrelevant or primal decision literal would yield redundant
models w.r.t. projection onto X. Therefore, when backtracking chronologically, the
solver turns the last relevant decision literal into a flipped decision literal and as-
signs it the sum of the number of models represented by the actual trail projected
onto X and all models detected at decision levels > dl(`) (BN0F). Alternatively,
a blocking clause is added to P (BN0L). If I`d I′ satisfies P, π(I`I′, X) can be ex-
tended to m′′ = 2|X−I`I′| models of ∃Y.F(X, Y), and M is incremented by m′′. As
discussed above, the last relevant decision literal ` must be considered. It may be
turned into a flipped decision literal and assigned the sum of m′′ and all num-
ber of models detected at decision level > dl(`) (BP1F). Alternatively, a blocking
clause may be added to P (BP1L).

11.4 calculus 69

Decisions. P|I and N|I contain neither a unit nor the empty clause. Relevant in-
put variables are prioritized (DX) over irrelevant input and primal variables (DYS).
Assigning primal variables before irrelevant input variables might result in a con-
flict in P but has no effect on N and hence does not affect the model count. In
this case, the duality property might not hold for the residuals as discussed in
Section 11.3.

Unit propagation. Literals are propagated in both P and N. Unit propagation
in P is prioritized over unit propagation in N and is executed as in SAT (UP).
For unit propagation in N, two cases need to be considered. If var(`) ∈ X ∪ Y, I

is extended by `
d

to enforce backtracking due to a conflict in N|I` in the next
step (UNXY). Otherwise, it is propagated (UNT).

Forgetting redundant clauses. Deletion of redundant clauses is equivalence-pre-
serving, hence redundant clauses may be removed anytime (FP) assuming P is
conflict-free under I.

Blocking clauses in dual mode. Blocking clauses shall impede the multiple detec-
tion of models. Since they are added exclusively to P, this fails in the dual setting
if a trail falsifies N. Consider F(X, ∅) = (1 ∨ 2) ∧ (1 ∨ 2) over X = {1, 2, 3, 4} and
Y = ∅. We define P = F and N = (5 ∨ 1) ∧ (5 ∨ 2) ∧ (6 ∨ 1) ∧ (6 ∨ 2) ∧ (5 ∨ 6),
hence S = ∅ and T = {5, 6}. After deciding 4, 3 and 2 (DX), 5 and 6 are prop-
agated in N (UNT) resulting in a conflict in N|I with I = (4d, 3d, 2d, 5, 6) and
π(I, X) = (4, 3, 2). The solver adds the blocking clause (2 ∨ 3 ∨ 4) to P, sets
M = 2 and backtracks chronologically (BN0L). After propagating 1 (UP), P is
falsified. JP0 is applied yielding the redundant unit clause (2), and the solver
jumps back to decision level 0. It propagates 2 UP), 5 and 6 (UNT) resulting in
I = (2, 5, 6) which falsifies N. The partial model π(I, X) = (2) represents 23 = 8
total models of F. Note that this model subsumes the one found previously. In our
framework, we therefore have to disallow the combination of blocking clauses
and dual reasoning. This means that “L” rules can not be combined with “N”
rules. Thus only “F” rules are allowed if we insist on using “N” rules, which is the
default in our implementation.

A workaround would be the following: If a blocking clause is added to P, either
its negation is added disjunctively to N or, whenever a conflict in N occurs, it must
be ensured that none of the blocking clauses is falsified by the current trail. In the
first case, N is not a CNF anymore, and the rules and preconditions involving N
and the whole search procedure need to be adapted accordingly. In the second case
we need to keep track of the blocking clauses instead, e.g., in a CNF R (refutations),
and check whether R is satisfied prior to count a model whenever N is falsified
by I.

Combining blocking clauses and discounting. If previously found models are dis-
counted upon backjumping and learning a blocking clause, they may be lost. The
problem in this case arises if these models are blocked by the learned clause. Con-
sider F = (1 ∨ 2) ∧ (1 ∨ 3) ∧ (1 ∨ 2). P = F and N = (6 ∨ 1) ∧ (6 ∨ 2) ∧ (7 ∨
1) ∧ (7 ∨ 3) ∧ (8 ∨ 1) ∧ (8 ∨ 2) ∧ (6 ∨ 7 ∨ 8) with X = {1, 2, 3, 4, 5}, Y = ∅, S = ∅,
and T = {6, 7, 8}. After deciding 5, 4, and 3, 1 and 2 are propagated which leads
to the detection of model m1 = (1, 2, 3, 4, 5). The last decision is flipped (BP1F)
and after propagating 7, deciding 2 and propagating 6 and 8, a second model
m2 = (2, 3, 4, 5) is found. The solver backtracks and flips the last decision (BN0F).

At a later stage, BP0F is executed, and I = (5d, 4 f (3)
). The model count associated

with the flipped decision literal 4 f (3) refers to models m1 and m2. Later on, a third

70 paper 2 : dualizing projected model counting

model m3 = (1, 2, 4, 5) is detected and (BN0F) executed. After one more propaga-
tion step, model m4 = (1, 2, 3, 4, 5) is detected and a blocking clause b = (2 ∨ 5)
learned (BP1L). Due to the application of JP0 in the further procedure, the solver

jumps back to level 0, i.e., past the flipped decision literal 4 f (3). It discounts mod-
els m1 and m2, i.e., 3 total models. Since these models are blocked by b, they can
not be found again. In fact, during the further execution the models m5 = (1, 2, 5)
and m6 = (1, 2, 3, 5) are found before terminating with EN0, and the solver re-
turns M = 9 instead of M = 12. Combining the use of blocking clauses with
discounting therefore conditions to discount only models which are not blocked
by the learned clause and to add blocking clauses for these models as soon as the
respective flipped decision literal is removed from I. An obvious drawback of this
method is that these checks are expensive since the number of models may be ex-
ponential in the number of relevant variables. Thus our framework also disallows
the combination of discounting and blocking clauses. This means that as soon
we have discounting enabled, actually backjumping (JP0) with m′ 6= 0, we can
not use blocking clauses (“L” rules). This provides another reason to disable “L”
rules in our implementation by default, even though for testing purposes blocking
clauses can be enabled (if dual reasoning and discounting are disabled).

The demonstrated issues concerning the use of blocking clauses did not use
irrelevant variables, but the argument can easily be lifted to the case where Y 6= ∅.

11.5 implementation

We have implemented the calculus of Section 11.4 in our new tool Dualiza im-
plemented from scratch in C available at http://fmv.jku.at/dualiza. The tool
counts and prints the number of models, optionally projected on a set of relevant
variables. It can also act as a simple SAT solver, or enumerate all (projected) partial
models, i.e., compiles a disjunctive representation of all (projected) models.

We carefully tested our tool against state-of-the-art SAT solvers and the model
counter sharpSAT [189] using a regression test suite which comes with the tool but
also using fuzz testing [35]. Beside the main CNF-based back-end implementing
of our calculus, we also provide our own BDD engine, which obviously only scales
for small formulae, but is useful to test projected model counting.

The front-end of Dualiza reads Boolean formulae in a simple format, circuits
in AIGER format [18], or CNF in DIMACS format, and encodes them into CNF
using the Plaisted-Greenbaum transformation [164] after flattening the internal
circuit representation. As future work we plan to further optimize the internal
circuit representation. The same procedure is applied to the negated formula to
obtain a dual representation.

The resulting primal and dual CNFs (P and N) are individually preprocessed
by bounded variable elimination [65], which is restricted to only eliminate irrel-
evant variables (S ∪ T). We will add more preprocessing and in particular more
dedicated preprocessing techniques such as those from [115] in the future.

The core engine of Dualiza uses standard data structures and algorithms im-
plemented in state-of-the-art CDCL solvers, including watched literals, activity-
based decision heuristics (actually VMTF), frequent garbage collection of learned
clauses, and also frequent restarts (as long as no variable is flipped). An important
optimization is to allow picking decisions in an arbitrary order until a first model
is found. Then we restart without counting this first model and afterwards enforce

http://fmv.jku.at/dualiza

11.6 experiments 71

splitting on relevant variables first. Due to phase saving this first model is found
again instantly.

The source code marks the implementation of every rule of our calculus through
macros (“RULE”), which allows to gather statistics about their application and also
can be used to produce traces of the application of our calculus on concrete exam-
ples (“dualiza -l | grep RULE”).

11.6 experiments

Consider again the example in Figure 11.1. The solver trace (enabled with “-l”)
shows the decision level (number of decisions plus flipped decisions) in the 3rd col-
umn, followed by the name of the rule and a running counter for each rule. The
last column gives the (encoded) flipped or added literal.

The simplest interesting example is a CNF formula consisting of a single clause
of n variables. In dual mode such a formula is solved by dual propagation alone.
Consider for n = 4 the simple Boolean formula listed on the left hand side of
Figure 11.1 in the formula input format of Dualiza. In dual mode Dualiza can
enumerate and count the number of such a formula instantly, i.e., for n = 10000 the
number of models 210000 − 1 is computed in 0.16 seconds. Disabling dual mode
(“-no-dual”) leads to exponential run-times in n, since our implementation re-
quires that all variables are assigned before detecting that P is empty (rules BP1F
and BP1L), as it is common in SAT solvers. Already for n = 30 it takes more
than 215 seconds when only applying our flipping rules and the procedure does
not terminate within one hour when only using blocking clauses (even with the
subsumption check described in Section 11.8 enabled).

For component-based model counting as implemented in the state-of-the-art
exact model counter sharpSAT [189] such single clause instances are trivial too
(10.58 seconds for n = 10000), since for each decision in one branch the formula
is satisfied and in the other branch the clause is reduced in size. Actually such a
solver could in principle instantly determine the number of models as soon as a
component consists of a single clause.

Thus in order to show the orthogonal strength of our approach compared to
component-based model counting, we also experimented with formulae where
splitting on variables does not partition the formula into disconnected compo-
nents. Consider for n = 4 the following formula

(x1 | x2 | x3 | x4) |

(x5 = x2 ^ x3 ^ x4) |

(x6 = x1 ^ x3 ^ x4) |

(x7 = x1 ^ x2 ^ x4) |

(x8 = x1 ^ x2 ^ x3)

The first row is similar to the previous example. The other equalities evaluate
to true if the new variable on the left is identical to the parity (“ˆ” denotes XOR)
of different sets of three variables. The number of models is 22n − 1, e.g., only the
assignment where the first n variables are false and the second half are true is not
a model. Our implementation takes 244.37 seconds to compute 210000 − 1 models
for n = 5000, while sharpSAT shows exponential behavior and can only compute
the model count up to n = 21 within one hour.

In a related experiment we took the 127 satisfiable CNF benchmarks from the
main track of the SAT Competition 2017, for which at least one solver produced
a correct witness during the competition within 5000 seconds (on a slightly faster

72 paper 2 : dualizing projected model counting

machine). Our tool finds at least one model for 60 benchmarks within the same
time limit (best solver in the competition 102), and provides an exact model count
for 22 in primal mode and 16 in dual mode. This shows that dual reasoning
without projection is in our current implementation not really effective for bench-
marks in CNF. However, sharpSAT could only provide an exact model count for
one benchmark (“9_38”), runs out of memory on 10 and actually also produced
two discrepancies (claimed that both “ak128modbtbg2msisc” and “UCG-20-10p1”
have no solutions).

The most recent paper on projected model counting [10] used random bench-
marks and a set of planning benchmarks, which are only available in CNF. It turns
out that our tool is not really competitive on these instances without component
reasoning. Due to the non-structural CNF input format, dual propagation is not
effective and our tool in essence enumerates all (projected) models explicitly. We
are exploring other potential sources of benchmarks for projected model counting,
including AIGER circuits from hardware model checking.

Our experiments used an Intel Xeon E5-2620 v4 CPU at 2.10GHz (turbo-mode
disabled) with memory limit of 31 GB.

11.7 related work

Due to its wide practical applicability, research on propositional model counting
exhibits an impressive diversity, as demonstrated by the following list of related
work.

Exact model counting. A widely used paradigm is that of splitting the formula
into subformulae called components with disjoint variable sets which are then pro-
cessed separately [15]. The authors also demonstrate the need for so-called good
learning in contrast to nogood learning realized by CDCL. Combining component
caching and clause learning resulted in a significant performance gain [173]. In
sharpSAT [189], implicit BCP and an improved component caching additionally re-
duces search space and cache size. The caching scheme was adapted to support
parallelization [37] and distributivity [38]. For a survey on exact model counting
algorithms we refer to [144].

Approximate model counting. In some applications, such as probabilistic reason-
ing, an approximated model count would suffice. Let us mention two paradigms
originating from probability theory. The first is based on sampling [45, 86], while
in the second (short) XOR constraints are added to the formula until it becomes
unsatisfiable [1, 88]. Exact and approximate model counting algorithms are com-
pared in [89].

Alternative methods. All mentioned exact model counters so far are based on
the DPLL algorithm [60] or an enhancement thereof. An alternative approach
consists in compiling the formula into a language in which model counting is
tractable [16, 59] applied in, e.g., conformant planning [162]. In theory structure-
based approaches can for instance also make use of the community structure of the
formula [81] or the structure of the hypergraph associated with the formula [41,
42].

11.8 conclusion

We have presented a dual procedure for projected model counting taking into ac-
count the formula as well as its negation. We devised an efficient good learning

11.8 conclusion 73

mechanism based on the detection of partial models, which is exempt from satis-
fiability checks and clause watching. This method enables the pruning of a poten-
tially large portion of the search space. Formulae with large satisfying subspaces
of the search space benefit most. For these, the learned goods tend to be short.
We introduced the concepts of flipping and discounting to remember the models
found at the actual decision level. This allows us to jump back over branches in
which models were found by simply subtracting their count from the number of
models found so far. Completeness of CDCL guarantees that these models are
found again at a later stage. Flipping and discounting render the use of blocking
clauses superfluous and thus prevent an additional growth of the formula.

We have preliminary ideas on how to handle backjumping and redundant dual
clause learning for dual conflicts. This has the potential to shrink partial models
substantially, particularly in combination with discounting. In the current calculus
this situation is addressed by backtracking (BN0F and BN0L).

Our method prioritizes decisions of the relevant variables over the irrelevant
variables. By adopting the search strategy utilized in [84], we might be able to
relax this restriction. Note that with every relevant flipped decision the models
grow larger. We plan to investigate whether overall backjumping upon a conflict
in N can compensate restrictions imposed by our branching heuristics. Moreover,
the algorithm presented in [84] allows to remove blocking clauses eagerly and
explicitly as soon they are not needed anymore. This is not captured in our cal-
culus yet. In our implementation we provide a poor-man’s version simulating
this approach partially, by trying to subsume previous blocking clauses by a new
blocking clause.

Another important future extension of our calculus is to capture component rea-
soning, which can give exponential speed-ups orthogonal to what can be achieved
by dual reasoning.

Beside the more technical challenge to improve the CNF encoding through cir-
cuit optimizations and extending and applying more preprocessing techniques to
the generated CNFs individually, we also want to explore more general preprocess-
ing techniques which jointly work on the dual representation, taking advantage
of the duality property.

Finally, Dualiza makes it easy to apply model counting in various domains.
This in turn will allow the research community to obtain interesting model count-
ing benchmarks and in general encourages more research in model counting.

12
D I S C U S S I O N O F PA P E R 2

The paper is summarized and the main contributions are pointed out and pre-
cised (Section 12.1). More details and examples are provided concerning the de-
cision strategy and the flipping and discounting mechanism, which due to space
requirements were only shortly touched upon in the paper (Section 12.2 and Sec-
tion 12.3), as well as unit propagation in the dual formula (Section 12.5). After
the publication of the paper, we have worked on understanding how dual con-
flicts can be handled, a topic listed in the paper as future research direction. It
turned out that conflict-driven backjumping in the dual formula might result in
the loss of models and can therefore only be adopted in the primal formula (Sec-
tion 12.4). Using blocking clauses (L rules) in dual mode or in combination with
flipping and discounting (F rules) may lead to an incorrect result (Section 12.6).
Finally, we have repeated the experiments reported in the paper and run the same
experiments on model counters introduced after the publication of our paper. The
results are presented in Section 12.7.

12.1 main contributions

We extended our calculus Abstract Dual #DPLL [24] by projection capabilities and
by conflict-driven clause learning (CDCL) with non-chronological backjumping.
The former facilitates the processing of formulae in which not all variables are
relevant for a given task and of formulae containing auxiliary variables, while the
latter allows for taking advantage of learning from conflicts.

Our dual model counter Dualiza takes as argument an arbitrary formula or
a circuit F(X, Y) defined over the set of relevant input variables X and the set of
irrelevant input variables Y, where X ∩Y = ∅. It transforms F(X, Y) and ¬F(X, Y)
into CNFs P(X, Y, S) and N(X, Y, T) with auxiliary variables S and T by means
of the Tseitin encoding [192], but the Plaisted-Greenbaum [164] transformation
could be adopted as well. As we have seen in Chapter 6, the Tseitin encoding
preserves the model count of F, because it replaces a subformula G of F with a
fresh variable u and adds its definition (u ↔ G) to F, hence in all total models
of tseitin(F), both u and G evaluate to the same truth value. In contrast, in the
Plaisted-Greenbaum transformation either (u → G) or (u ← G) is added to F,
hence the Plaisted-Greenbaum transformation does not preserve the model count.
However, the total models of P projected onto X ∪ Y are exactly the total models
of F projected onto X ∪ Y, and the Plaisted-Greenbaum transformation preserves
the model count under projection.

In Abstract Dual #DPLL, the formulae P and N are defined over the same set
of variables. This is not the case anymore for P(X, Y, S) and N(X, Y, T), since S

75

76 discussion of paper 2

and T are disjoint. Consequently, the residuals of P and N under a trail are not
correlated, either. These observations are taken into account by partitioning a total
assignment σ : X ∪ Y ∪ S ∪ T 7→ B into the relevant input assignment σX : X 7→ B

and the irrelevant input assignment σY : Y 7→ B as well as the primal assignment
σS : S 7→ B and the dual assignment σT : T 7→ B, and by the dual formula represen-
tation of the input formula, which for F(X, Y) consists of P(X, Y, S) and N(X, Y, T).
The dual formula representation provides the basis for our definition of the duality
property capturing the relation between P and N. Basically, the duality property
says that whenever a total assignment to the variables in X ∪Y can be extended to
an assignment satisfying P, it can not be extended to an assignment satisfying N
and vice versa, and it holds for residuals as well, provided relevant variables are
decided before irrelevant and primal ones and dual variables are never decided,
as explained in further down. The dual representation enables us to find partial
models without implementing clause watching mechanisms or executing satisfia-
bility checks. Particularly the latter is expensive for large formulae. It also impacts
the order in which variables need be decided as well as the termination condi-
tions. In the paper, these conditions were only shortly touched upon, and details
are provided in Section 12.2.

In order to avoid finding models multiple times after conflict-driven backtrack-
ing, we introduce the concepts of flipping and discounting. In the paper, this tech-
nique was only shortly sketched and introduced by the corresponding rules. We
provide an example in Section 12.3. The investigation of the combination of dual
reasoning, flipping and discounting, and good learning provided us with a further
understanding of our dual approach.

We extended our tool DualCountPro by the new rules. It turned out to be very
helpful in checking our rules. The execution trace and running time in the dual
mode is mostly significantly shorter than in primal, i. e., non-dual, mode. This
contrasts our observations in the new tool Dualiza implemented from scratch
in C. We present DualCountPro in Chapter 13.

12.2 decision strategy

Counting or enumerating models under projection involves exploring the relevant
search space, which consists of all possible assignments to the relevant input vari-
ables σX. Therefore, if a model has been found, a relevant decision need be flipped
to ensure that an unexplored relevant input assignment is obtained. And to ensure
that all possible relevant assignments are tested, relevant input variables must be
decided before irrelevant ones: if the most recent relevant decision on the trail is
flipped and a conflict in P is obtained due to some irrelevant or primal assignment,
this particular relevant assignment might not be encountered again. If its projec-
tion onto X ∪Y could be extended to a model of ∃S . P(X, Y, S), the corresponding
model is missed. The following example clarifies this idea.

12.2 decision strategy 77

Example 12.1 (Deciding irrelevant inputs before relevant inputs). Consider

P(X, Y, S) = (a ∨ b ∨ c ∨ s1)︸ ︷︷ ︸
P1

∧ (a ∨ b ∨ c ∨ ¬s1)︸ ︷︷ ︸
P2

∧

(a ∨ b ∨ ¬c ∨ s1)︸ ︷︷ ︸
P3

∧ (a ∨ b ∨ ¬c ∨ ¬s1)︸ ︷︷ ︸
P4

∧

(¬a ∨ ¬b ∨ c ∨ s1)︸ ︷︷ ︸
P5

∧ (¬a ∨ ¬b ∨ c ∨ ¬s1)︸ ︷︷ ︸
P6

∧

(¬a ∨ ¬b ∨ ¬c ∨ s1)︸ ︷︷ ︸
P7

∧ (¬a ∨ ¬b ∨ ¬c ∨ ¬s1)︸ ︷︷ ︸
P8

∧

(c ∨ s1 ∨ s2)︸ ︷︷ ︸
P9

∧ (c ∨ s1 ∨ ¬s2)︸ ︷︷ ︸
P10

defined over the set of relevant input variables X = {a}, the set of irrelevant input vari-
ables Y = {b, c}, and the set of primal variables S = {s1, s2}, and

N(X, Y, T) = (a ∨ ¬b ∨ c ∨ t1)︸ ︷︷ ︸
N1

∧ (¬a ∨ b ∨ c ∨ ¬t1)︸ ︷︷ ︸
N2

∧

(a ∨ ¬b ∨ ¬c ∨ t1)︸ ︷︷ ︸
N3

∧ (¬a ∨ b ∨ ¬c ∨ ¬t1)︸ ︷︷ ︸
N4

∧

(¬a ∨ b ∨ c ∨ t1)︸ ︷︷ ︸
N5

∧ (a ∨ ¬b ∨ c ∨ ¬t1)︸ ︷︷ ︸
N6

∧

(¬a ∨ b ∨ ¬c ∨ t1)︸ ︷︷ ︸
N7

∧ (a ∨ ¬b ∨ ¬c ∨ ¬t1)︸ ︷︷ ︸
N8

∧

(¬c ∨ t1 ∨ t2)︸ ︷︷ ︸
N9

∧ (¬c ∨ t1 ∨ ¬t2)︸ ︷︷ ︸
N10

defined over the same sets of relevant and irrelevant variables X and Y, and the set of
dual variables T = {t1, t2}. Notice that P and N comply with the duality property (Def-
inition 11.2): it holds that ∀X, Y . ((∃ S . P(X, Y, S))⊕ (∃ T . N(X, Y, T))), and when-
ever for a total input assignment σX ∪ σY there exists a total primal assignment σS such
that (σX ∪ σY ∪ σS)(P(X, Y, S)) = 1, for all possible total assignments σT we have
that (σX ∪ σY ∪ σT)(N(X, Y, T)) = 0, and vice versa. In fact, the models of P pro-
jected onto X ∪ Y are a¬bc, a¬b¬c, ¬abc, and ¬ab¬c, and the models of N projected
onto X ∪ Y are abc, ab¬c, ¬a¬bc, and ¬a¬b¬c. We are interested in the models of P
projected onto X, which are given by models(∃Y, S . P(X, Y, S)) = {a,¬a}.

The trail ¬bd cd ad satisfies P, and the model m1 = a is recorded. Flipping ad and
propagating s1 with reason P3 results in a conflict in P, since P4 becomes empty. The
resulting trail ¬bd cd¬a contains no relevant decision, and the computation terminates
returning a and missing ¬a.

In our rules, irrelevant and primal variables are treated equally with respect to
the decision strategy, i. e., after all variables in X are assigned, variables in both Y
and S may be decided. The projection of the resulting trail onto X is not affected
by the decision whether primal or irrelevant input variables are decided first. Fur-
thermore, only relevant decisions are flipped after finding a model, hence only
pairwise contradicting models are found, and since relevant decisions are priori-
tized, all models projected onto the relevant input variables X are found.

78 discussion of paper 2

Since deciding primal variables is permitted, a primal variable might be as-
signed a value such that the resulting trail I falsifies P, even if its projection
onto X ∪ Y is a model of ∃S . P(X, Y, S). In this case, the trail I can not be ex-
tended to a model of N, either, and the duality property does not hold hold any-
more. However, this has no effect on the model count: to ensure that all possible
assignments are tested, after a conflict the most recent decision need be flipped,
be it relevant or irrelevant or primal, and a satisfying assignment differing only in
primal variables from I will be found. If instead the duality property is violated
due to the decision of a dual variable and a conflict in N occurs, the projection of
the current trail onto X ∪Y is considered a model of ∃S . P(X, Y, S), and a counter-
model of ∃S . P(X, Y, S) is counted or enumerated, as shown by an example.

Example 12.2 (Violation of the duality property). Consider again Example 12.1 and
let the current trail be I = ad¬bd¬s1

d¬cd s2
P9 . The clause P10 is empty under I, and

therefore P|I = 0. But I can not be extended to a model of N, either. After flipping the
most recent decision ¬cd, the resulting trail ad¬bd¬s1

d c satisfies P. Its projection onto X
is a, which is exactly I projected onto X. The most recent relevant decision is flipped
followed by deciding again ¬s1 and propagating c with reason P5, after which P7 becomes
empty. The current trail is ad b¬s1

d cP5 . The most recent decision ¬s1
d is flipped and the

literal c is propagated with reason P6 resulting in P8 becoming empty. After backtracking
chronologically and deciding b and c, the trail ¬abd cd satisfies P. Its projection onto X
is ¬ab. The trail contains no relevant decision and the computation terminates.

Now let our trail be J = ad bd¬t1
d¬cd t2

N9 . The clause N10 is empty under J, and J
can not be extended to a model of P, either. However, the preconditions of rules BN0F
and BN0L are met, and ab is counted, which clearly is wrong.

We therefore prioritize the deciding relevant input variables and never decide
dual variables. This decision strategy is reflected in the rules depicted in Fig-
ure 11.2b. It is still possible to count the models of P projected onto X without
considering N. Instead, the computation might not be possible considering only N,
namely in the case where all input variables are assigned and unit propagation has
been performed but the residual of N under the resulting trail is still undefined.

The following invariant stated in Equation 11.5 provides the basis for our dual
model counting method and holds anytime under this decision strategy:

∀X, Y . ((¬∃ T . N(X, Y, T)|I)→ (∃ S . P(X, Y, S)|I))

First, since P(X, Y, S) and N(X, Y, S) comply with the duality property stated in
Equation 11.3, a total assignment σX ∪ σY which can not be extended to a model
of N can be extended to a model of P. Second, dual variables are never decided.
They are therefore either assigned according to their definition or not assigned at
all, and it can not happen that the duality property is violated due to a “wrong”
assignment to a dual variable. From this it follows that whenever a conflict in N
occurs, the projection of the trail onto X ∪ Y satisfies ∃S . P(X, Y, S), which is re-
flected in the rules BN0F and BN0L of our calculus shown in Figure 11.2a.

12.3 flipping and discounting by an example

Consider again Example 12.1 but with X = {a, b, c} and Y = ∅. The following
discussion can readily be lifted to the case where Y 6= ∅. We are interested in
the number of total models of P(X, Y, S) projected onto X, which is given by
|models(∃Y, S . P(X, Y, S))| = |{a¬b¬c, a¬bc,¬abc,¬ab¬c}| = 4.

12.3 flipping and discounting by an example 79

Table 12.1: Flipping and discounting example.

step i rule j model mc

1 ad¬bd¬cd t1
N5 BN0F ad¬bd c f (1) a¬b¬c 1

2 ad¬bd c f (1) BP1F ad b f (2) a¬bc 2

3 ad b f (2)¬cd s1
P5 BP0F ad b f (2) c f (0) 2

4 ad b f (2) c f (0) s1
P7 BP0F ¬a f (2) 2

5 ¬a f (2) bd cd BP1F ¬a f (2) bd¬c f (1) ¬abc 3

6 ¬a f (2) bd¬c f (1) t1
N1 BN0F ¬a f (2)¬b f (2) ¬ab¬c 4

7 ¬a f (2)¬b f (2) cd s1
P3 BP0F ¬a f (2)¬b f (2)¬c f (0) 4

8 ¬a f (2)¬b f (2)¬c f (0) s1
P1 EP0 ¬a f (2)¬b f (2)¬c f (0) s1

P1 4

For the sake of conciseness, the discussion is restricted to the interesting situ-
ations, which are those in which the trail either satisfies or falsifies P or N. The
intermediate execution steps can be retraced based on the trail. The execution trace
is shown in Table 12.1. The first column denotes the line number. The columns I
and J refer to the trail before and after the execution of the rule listed in the third
column. The fifth and sixth column represent the model found in this step and the
number of models found so far and initialized with zero, respectively. In the rest
of this subsection, the executions steps are discussed one by one.

Step 1: We have N2|I = 0, hence the projection of I onto X, π(I, X) = a¬b¬c,
is a model of ∃Y, S . P(X, Y, S). It is a total model, and the model count MC is
incremented by one. The model counter backtracks chronologically applying the
rule BN0F. The decision ¬cd is flipped and marked as a flipped decision literal
with the number of models found becoming c f (1).

Step 2: The resulting trail satisfies P, and chronological backtracking occurs by
means of the rule BP1F. The model found is total under projection onto X. The
variable c is unassigned, the model count associated with it is summed up to
the number of models represented by I, and the decision ¬bd becomes b f (2). The
number of models found so far is incremented by one.

Step 3: The trail I falsifies P, since P6|I = 0. The rule BP0F is applied. No model
was found after taking the most recent relevant decision ¬c. It is flipped, and the
model count associated with it is zero. The model count MC remains unaffected.

Step 4: A conflict in P is obtained, since P8|I = 0. The most recent relevant decision
is ad. It is flipped and the model count associated with it is the sum of the model
counts associated with all flipped decisions which are unassigned, which is two.
Since I is a counter-model of P, the model count MC remains unaffected.

Step 5: The trail I satisfies P. It is a total model of ∃Y, S . P(X, Y, S). Rule BP1F is
applied, and the most recent relevant decision cd is flipped becoming ¬c f (1). The
model count MC is incremented by one, since the found model is total.

Step 6: We have N6|I = 0, and π(I, X) is a total model of ∃Y, S . P(X, Y, S). Chrono-
logical backtracking occurs by executing rule BP1F. The most recent relevant de-
cision literal is bd. It is flipped and associated with the sum of the number of
models found, which is one, and the model counts of the flipped decision liter-
als which are unassigned during backtracking, which is only ¬c f (1). The resulting

80 discussion of paper 2

trail is ¬a f (2)¬b f (2). It contains two flipped decision literals each of which is asso-
ciated with model count two. The number of models projected onto X represented
by I is one, and the model count MC is incremented by one.

Step 7: A conflict in P has occurred, since P4|I = 0. Applying rule BP0F results
in flipping the most relevant decision cd, which is assigned with model count 0.

Step 8: The trail I falsifies P2 and hence P. It contains no relevant decision lit-
eral indicating that the relevant search space has been explored exhaustively. The
search terminates with MC = 4, which is correct. The models projected onto X
are a¬b¬c, a¬bc, ¬abc, and ¬ab¬c.

12.4 conflict-driven clause learning in the dual formula

Our original idea was to analyze conflicts in N and to learn a clause allowing for
pruning regions of the search space containing only models, similarly to CDCL,
and to apply conflict-driven backjumping. However, it turns out that CDCL with
conflict-driven backjumping implemented in state-of-the-art SAT solvers is appli-
cable only in P: the search space is not traversed in an ordered manner, and while
due to completeness of CDCL with non-chronological backtracking, the models
of N will be found later in the search, this need not be the case for counter-models
of N, which are the assignments we are interested in.

Suppose the trail contains a decision literal ad and a conflict in N occurs. Further
assume conflict analysis yields a unit clause (b). The model counter backtracks
non-chronologically to decision level zero and propagates b. Propagating b at de-
cision level zero prevents the check of all assignments containing ¬b which were
not yet tested and might result in missing conflicts in N. This comprises all right
branches of the decision literals on the trail.

The following example clarifies this idea. Without loss of generation and for the
sake of conciseness, we only consider N(X, Y, T) where T = Y = ∅.

Example 12.3 (Missed models due to CDCL in the dual formula). Consider the
propositional formula F(X, Y) = (¬a∧ b)∨ (¬c∧¬d)∨ (¬c∧ d) with X = {a, b, c, d}
and Y = ∅. Its negation is N(X, Y, T) = N1 ∧N2 ∧N3 = (a∨¬b)∧ (c∨ d)∧ (c∨¬d)
with T = ∅. Our dual model counter Dualiza reports the partial models ¬c and ¬abc
of F, which together represent 10 total models.

After deciding ¬a using rule DX and deciding b by means of rule UNXY, the trail ¬ad bd

falsifies clause N1, and the model m1 = ¬ab of F is found. Conflict analysis yields the
conflict clause D1 = (a ∨ ¬b), which is added to N. The assertion level of D1 is one, and
after backtracking to decision level one, the literal ¬b is propagated with reason D1. The
trail is ¬ad¬bD1 , and the residual of N under this trail is undefined. The decision ¬cd

is taken using rule DX followed by deciding ¬d by means of rule UNXY. The result-
ing trail ¬ad¬bD1¬cd¬dd falsifies clause N2. Only the most recent two decisions are
involved in the conflict, and conflict analysis yields the conflict clause D2 = (c ∨ d). One
total model m2 = ¬a¬b¬c¬d has been found. The assertion level of D2 is two, and the
resulting trail after backtracking and propagating d with reason D2 is ¬ad¬bD1¬cd dD2

falsifying N3, and m3 = ¬a¬b¬cd. For conflict analysis, the conflicting clause N3 is
resolved with D2, the reason of d, and the conflict clause D3 = (c) is learnt, which is unit
and triggers backtracking to decision level zero and propagating c with reason D3. The
resulting trail is cD3 . Clearly, the models a¬c¬d and a¬cd of F can not be found, since c
is propagated at decision level zero and will never be flipped.

12.5 propagating input literals in the dual formula 81

12.5 propagating input literals in the dual formula

Let the current trail be I such that N|I contains a unit literal ` with var(`) ∈ X ∪Y.
Unlike in Abstract Dual #DPLL, the complement of ` is decided (rule UNXY).
The immediate consequence is a conflict in N, upon which the model I¬` is
recorded or counted and the decision ¬`d is flipped (rule BN0F or BN0L). Apply-
ing rules UNXY and BN0F (or BN0L) has the same effect as rule UPN in Abstract
Dual #DPLL with the difference that in the latter the model I¬` is not computed
explicitly but counted according to Equation 9.2, which saves one decision.

The motivation for designing rule UNXY in this manner was to use the same
code for conflict analysis in both P and N. However, executing CDCL with conflict-
driven backjumping after a conflict in N might result in a loss of models as shown
in Section 12.4. It might therefore make sense to define propagation of input liter-
als in N similarly to rule UN in Abstract Dual #DPLL but with projection support,
which makes it challenging. Developing the relevant rules is out of the scope of
this thesis and an interesting future research topic.

12.6 dual blocking clauses

In our framework, blocking clauses can not be used in dual mode, because they are
added only to P. In fact, since the blocking clauses are not logically entailed by P
and N remains unaltered, the duality property does not hold anymore. While the
intuition was that prioritizing unit propagation in P over unit propagation in N
would be sufficient to deal with this issue, our experiments have shown that this
is not the case, and that the found models need be blocked in N, too, to avoid
finding models multiple times.

Recall that a model of N(X, Y, T) is a counter-model of ∃S . P(X, Y, X), i. e., we
want N to be satisfied whenever an assignment satisfying ∃S . P(X, Y, X) is re-
peated. This is achieved by adding it with a logical disjunction to N: if m is a
model of ∃S . P(X, Y, S), we set P′ = P ∧ ¬m and N′ = N ∨ m. Notice that N′ is
not in CNF anymore. It can easily be verified that, if P and N comply with the du-
ality property, P ∧ ¬m and N ∨m comply with the duality property as well. The
idea is clarified by a simple example.

Example 12.4 (Dual blocking clauses). Let the formulae P(X, Y, S) = P1 = (a ∨ b)
and N(X, Y, T) = N1 ∧N2 = (¬a)∧ (¬b) be defined over X = {a, b}, Y = S = T = ∅.
Obviously, P and N are the negation of each other. The assignment m = ab is a total model
of P. For blocking it, we set P′ = P ∧ (¬a ∨ ¬b) and N′ = N ∨ (a ∧ b). If the assign-
ment ab is encountered again, the formula P is falsified and N evaluates to 1 under this
assignment: the clause ¬m is falsified, hence P′ is falsified, too; the cube (a ∧ b) evaluates
to 1, hence N′ evaluates to 1, too. Similarly, every assignment satisfying P′ falsifies N′: in
fact, it satisfies the clause P1 contained in P and falsifies the clauses N1 and N2 contained
in N, since P and N comply with the duality property; it further satisfies ¬m, i. e., is
either a¬b, ¬ab, or ¬a¬b, all of which falsify (a ∧ b).

We have extended our dual model counter and enumerator DualCountPro,
which is presented in Chapter 13, with the new rules. In view of our implementa-
tion Dualiza, avoiding the combination of CNF and DNF was the main reason to
try to refrain from adding models to N. A solution might be to transform N back
into CNF after adding a model. The corresponding dual blocking clause encoding
is developed in Section 20.6.

82 discussion of paper 2

10 11 12 13 14 15 16 17 18 19 20 21 22 23

0.01

0.1

1

10

100

1,000

10,000

n

Ti
m

e
[s

]

Dualiza
C2D
sharpSAT
miniC2D
D4

projMC
GANAK

Figure 12.1: Solver comparison for non-decomposing formulae.

12.7 where our dual approach really wins

Our dual model counter Dualiza outperforms sharpSAT [189] on a CNF formula
which does not decompose into components after splitting on variables. Our ex-
ample was the following, presented here for n = 4:

(x1 | x2 | x3 | x4) |

(x5 = x2 ^ x3 ^ x4) |

(x6 = x1 ^ x3 ^ x4) |

(x7 = x1 ^ x2 ^ x4) |

(x8 = x1 ^ x2 ^ x3)

There, “|” denotes disjunction (∨) and “ˆ” denotes XOR (⊕). The number of mod-
els is 22n − 1. The only falsifying assignment is the one assigning 0 to the first n
variables and 1 to the second half.

Since the appearance of our paper, other #SAT solvers, namely projMCC [116]
and GANAK [179], have been presented. Also, one goal in the paper was to com-
pare Dualiza with component-based model counters. We evaluate these newer
solvers and repeat our experiments for Dualiza and sharpSAT reported in the
paper. For this thesis, we in addition report experiments with model counters im-
plementing a knowledge compilation approach. The experiments were run on our
cluster where each compute node has two Intel Xeon E5-2620 v4 CPUs running at
2.10 GHz with turbo-mode disabled. The time limit was set to 3600 seconds and
the memory limit to 128 GB.

We run the experiments for n ∈ {10, . . . , 26} on Dualiza and the model counters
C2D [55], sharpSAT [189], miniC2D [160], D4 [114], projMC [116], GANAK [179],
listed in chronological order by their introduction. The results are visualized in

12.7 where our dual approach really wins 83

Table 12.2: Experimental results for nrp formulae. The abbreviation “SF” denotes a seg-
mentation fault, and “TO” denotes a timeout.

n dualiza c2d sharpsat minic2d d4 projmc ganak

10 0.01 0.91 0.12 0.73 0.53 0.74 0.24

11 0.01 0.96 0.26 1.10 0.66 0.76 0.28

12 0.01 1.34 0.60 1.49 0.65 0.68 0.88

13 0.01 2.20 1.52 6.91 1.72 1.58 1.82

14 0.01 5.82 3.59 15.86 3.41 3.02 5.48

15 0.01 12.10 8.79 10.91 7.01 6.11 11.35

16 0.01 26.08 21.58 92.20 16.67 14.77 25.28

17 0.01 58.30 52.47 440.55 38.96 34.64 57.40

18 0.01 131.89 129.90 823.51 93.20 83.91 138.15

19 0.01 294.01 288.51 TO 219.01 192.72 329.20

20 0.01 622.36 704.11 TO 513.19 453.24 748.71

21 0.01 SF 1648.97 TO 1209.26 1062.46 1724.12

22 0.01 MO TO TO 2846.74 2507.87 TO

23 0.01 MO TO TO TO SF TO

24 0.01 MO TO TO TO SF TO

25 0.01 MO TO TO TO TO TO

26 0.01 MO TO TO TO TO TO

100 0.10 - - - - - -

1000 9.22 - - - - - -

2000 37.42 - - - - - -

3000 84.28 - - - - - -

4000 149.05 - - - - - -

5000 233.66 - - - - - -

Figure 12.1. On the x axis n is given, on the y axis the solving time in sec-
onds. Dualiza counts the models for n ∈ {10, . . . , 26} in 0.01 seconds. The other
solvers show an exponential behavior. The solvers D4 and projMC perform best
and compute the model count for n up to 22 within one hour. sharpSAT and
GANAK manage to count the models for n up to 21, while C2D counts the mod-
els for n up to 20 and miniC2D for n up to 18. The experiments were repeated for
n ∈ {100, 1000, 2000, 3000, 4000, 5000} on our solver Dualiza. In this run, Dualiza
was able to count the models for n = 5000 in 233.66 seconds. Detailed results are
presented in Table 12.2. The abbreviation “SF“ denotes a segmentation fault, “TO“
denotes a timeout, and “MO” means that the solver run out of memory.

All solvers except Dualiza show exponential behavior. The solver C2D reports
a segmentation fault (SF) for n = 21 and “out of memory for storing NNF” (“MO”)
for n ∈ {22, . . . , 26}. Except for n ∈ {10, 15}, C2D is faster than miniC2D, and with
growing n this lead increases. The reason might be twofold. On the one hand C2D
compiles the formula in question into a d-DNNF, while miniC2D compiles it into

84 discussion of paper 2

an SDD [160]; on the other hand nrp formulae do not partition into disconnected
components after splitting on variables. Notice that C2D ran out of memory after
836.00 to 862.92 seconds.1

sharpSAT counts the models for n up to 21 and is slightly faster than GANAK.
This is interesting, since Sharma, Roy, Soos, and Meel [179] in their evaluation
found that GANAK outperformed sharpSAT significantly on some instances. One
possible reason for this discrepancy might be given by the structure of the formu-
lae. There is evidence that real-world benchmark instances partition into discon-
nected components after splitting on variables, while nrp formulae don’t.

The solvers projMC and D4 exhibit a similar behavior and succeed for n up to 22.
While D4 runs out of time for n ∈ {23, . . . , 26}, projMC produces a segmentation
fault for n ∈ {23, 24} and runs out of time for n ∈ {25, 26}. We ran experiments
for n ∈ {100, 1000, 2000, 3000, 4000, 5000} only on Dualiza. The results are shown
in the lower part of Table 12.2. Dualiza computes the model count for n = 5000
in 233.66 seconds, qualitatively confirming our previous result presented in Sec-
tion 11.6.

1 These times are not reported in the table.

13
D UA L C O U N T P R O – A D U A L M O D E L C O U N T E R I N P R O L O G

To check the rules of our dual model counting frameworks (Chapter 9 and Chap-
ter 11), we implemented DualCountPro, a proof of concept in SWI-Prolog [199]
making use of the PIE environment [198]. Our goal was to perform a one-to-
one check of our rules, and SWI-Prolog provides an elegant solution. We briefly
touch upon the main architecture of our tool DualCountPro, a parametric model
counter and model enumerator that also supports projection, before presenting the
implementation of rule BN0L in more detail.

In an early stage of our work on dual model counting, we developed a classifi-
cation for organizing different variants of our framework based on the following
binary features:

D_IP. If set to 1, irrelevant and primal variables are treated with the same priority
with respect to decisions. If set to 0, primal variables are decided only after all
irrelevant input variables are assigned.

D_T. If set to 1, deciding dual variables is allowed.

J_P. Turns conflict-driven backjumping in P on if set to 1 and off otherwise.

J_N. Enables or disables conflict-driven backjumping in N.

L. Controls whether blocking clauses are added to P or not.

F. If set to 1, flipping and discounting is enabled.

Check_M. Turns checking the models in M on or off. If set to 1, this feature has
the same effect as adding the found models to N and corresponds to using dual
blocking clauses if Check_R is set to 1 as well.

Check_R. Checks whether the refutation is already contained in R. This option
corresponds to adding blocking clauses to P.

A framework is characterized by a tuple (D_IP, D_T, J_P, J_N, L, F, Check_M,
Check_R), where each element can be either 1, 0, or irrelevant, denoted by x. Rule
BN0L, depicted in Figure 13.2, could therefore be represented as (1, 0, 1, 0, x, x, 0, 1).

The options can be combined with all features. They allow for a more fine-
grained characterization of a framework. The following options are defined:

Dual. If set to 1, DualCountPro runs in dual mode. This option is very useful
in comparing execution traces in dual and non-dual mode.

U_N. If set to 1, unit propagation is allowed in N.

Top_rules. This option was created for disabling the use of the 1 rules. The idea
was to check whether it was was possible to solve a formula only by conflicts.

Enumerate. If set to 1, the models are enumerated.

Count. If set to 1, the total models are counted. Enumerate and Count can also be
used simultaneously.

85

86 dualcountpro – a dual model counter in prolog

The features defined for our classification gave rise to some of the parameters
DualCountPro takes as input, and this versatile architecture turned out to be
very useful for playing around with different variations of our framework.

Formulae are represented as lists of clauses, and clauses and cubes are rep-
resented as lists of literals. DualCountPro maintains lists for the primal for-
mula (denoted by P) and the dual formula (N) as well as the detected models (M)
and their refutations (R), which are their negations. In addition, the corresponding
residuals under the current trail are stored in separate lists (RP, RN, RM, and RR).

Sets of variables are also represented as lists. DualCountPro keeps lists for
the relevant input variables (X_vars) and the irrelevant input variables (Y_vars)
as well as for the primal variables (S_vars) and dual variables (T_vars), which are
the variables introduced by the transformation into CNF of the input formula F
into P and its negation ¬F into N. An additional list is defined containing the vari-
ables in Y ∪ S (YS_vars). It is used in place of Y_vars and S_vars if the irrelevant
inputs and primal variables are decided with the same priority, i. e., D_IP = 1. No
decision heuristic is implemented but we permute the variable lists randomly in
order to be to check our rules with different variable orderings, as we choose the
decision variables according to their ordering on the trail. The trail is represented
as a list of annotated literals (not shown).

States are represented as state(I, M, R, MC). They contain only elements which
are altered by the predicate apply_rule. Neither P nor N occur, because they are
not altered but M and R are taken into account additionally. We suffix the elements
of input states, which are states before executing a rule, with “_in” and the ones
of output states, i. e., states after rule execution, with “_out”.

DualCountPro executes the loop count shown in Figure 13.1. First it com-
putes RP, RN, RM, and RR, if needed (lines 1–14). Then it checks the rules sequen-
tially for their applicability until it finds an appropriate rule and succeeds with its
application (lines 15–22). A rule consists of a predicate apply_rule with the frame-
work features and options specified accordingly. If after executing a rule the input
state differs from the output state, the output state becomes the input state for the
next iteration (lines 23–34). Otherwise, the computation terminates (lines 35–38).

The implementations of our rules depicted in Section 11.4 do not differ sig-
nificantly from each other, and we present rule BN0L shown in Figure 13.2. Its
implementation is shown in Figure 13.3. The predicate apply_rule represents one
step from our calculus. It takes as inputs the framework features and options,
the formulae P and N, the various variable lists and residuals just computed as
well as the current input state (lines 1–5). Its output is the state altered by its
execution (line 6). The trail I_in and the number of models found so far MC_in
correspond to the trail I `d I′ and the DNF formula M in rule BN0L.

Rule BN0L is applicable if N|I `d I′ contains the empty clause, i. e., if RN contains
the empty clause, which is expressed as a membership test with the empty list of
literals [] representing the empty clause (line 9). DualCountPro does not add
blocking clauses to P but records them in R. Accordingly it checks whether RR
contains the empty clause (line 11). If this is the case, the check fails, and ap-
ply_rule fails. If RR does not contain the empty clause, the most recent deci-
sion with literal in X_vars is flipped (line 14), which corresponds to flipping
the decision `d in rule BN0L. If I_in contains no relevant decision, the predi-
cate flip_most_recent_decision fails, and hence apply_rule fails too. Otherwise,
the literals are retrieved from I_in (line 17 and projected onto the relevant vari-
ables X_vars and the model count updated (lines 22–24). Num_r_vars denotes

dualcountpro – a dual model counter in prolog 87

count(

framework(D_IP, D_T, J_P, J_N, L, F, Check_M, Check_R),

options(Dual, U_N, Top_rules, Enumerate, Count),

P, N, R_vars, I_vars, P_vars, D_vars, IP_vars,

state(I_in, M_in, R_in, MC_in),

Run, M_final, R_final, MC_final

) :-

1 % compute reducts if needed, otherwise assign them []

2 reduct_cnf(P, I_in, RP),

3 (Dual == 1 ->

4 reduct_cnf(N, I_in, RN)

5 ; RN = []

6),

7 (Check_M == 1 ->

8 reduct_dnf(M_in, I_in, RM)

9 ; RM = []

10),

11 (Check_R == 1 ->

12 reduct_cnf(R_in, I_in, RR)

13 ; RR = []

14),

15 apply_rule(

16 framework(D_IP, D_T, J_P, J_N, L, F, Check_M, Check_R),

17 options(Dual, U_N, Top_rules, Enumerate, Count),

18 P, N, R_vars, I_vars, P_vars, D_vars, IP_vars,

19 RP, RN, RM, RR,

20 state(I_in, M_in, R_in, MC_in),

21 state(I_out, M_out, R_out, MC_out)

22),

23 ((not(I_out == I_in)

24 ; I_out == I_in,

25 flip_last_spec_decision(I_out, I_tmp, R_vars, Dec_var)

26),

27 Run_next is Run + 1,

28 count(

39 framework(D_IP, D_T, J_P, J_N, L, F, Check_M, Check_R),

30 options(Dual, U_N, Top_rules, Enumerate, Count),

31 P, N, R_vars, I_vars, P_vars, D_vars, IP_vars,

32 state(I_out, M_out, R_out, MC_out),

33 Run_next, M_final, R_final, MC_final

34)

35 M_final = M_out,

36 R_final = R_out,

37 MC_final is MC_out,

38 Run_next is Run,

39).

Figure 13.1: SWI-Prolog code for outer loop of DualCountPro.

88 dualcountpro – a dual model counter in prolog

BN0L: (P, N, I `d I′, M) ;BN0L (P ∧ D, N, I `, M + m′′) if ∅ ∈ N|I ` I′ and

var(`) ∈ X and var(decs(I′)) ∩ X = ∅ and m′′ = 2|X−I`I′| and

D = π(¬decs(I`), X)

Figure 13.2: Rule BN0L from the dual model counting calculus.

% BN0L - backtracking upon conflict in N with learning

%

% Is applicable if

% - RN contains the empty clause and

% - RR does not contain the empty clause

% - I_in contains a decision literal with variable in X_vars

%

apply_rule(

1 framework(D_IP, D_T, J_P, J_N, L, F, Check_M, Check_R),

2 options(Dual, U_N, Top_rules, Enumerate, Count),

3 P, N, X_vars, Y_vars, S_vars, T_vars,

4 RP, RN, RM, RR,

5 state(I_in, M_in, R_in, MC_in),

6 state(I_out, M_out, R_out, MC_out)

7) :-

8 % conflict in N

9 member([], RN),

10 % model was not yet found

11 not(member([], RR))

12 % flip the most recent decision with variable in X_vars

13 % fails if no relevant decision is left on I_in

14 flip_most_recent_decision(I_in, I_out, X_vars, Dec_var),

15 % most relevant decision was flipped

16 % compute model projected onto the relevant variables

17 assigned_lits(I_in, AL),

18 project(AL, X_vars, Model),

19 % update list of models

20 add_first(Model, M_in, M_out),

21 % update model count

22 length(Model, Model_length),

23 length(X_vars, Num_r_vars),

24 MC_out is MC_in + 2^(Num_r_vars - Model_length),

25 % update refutations

26 negate_cube(Model, Refutation),

27 add_first(Refutation, R_in, R_out).

Figure 13.3: SWI-Prolog code for rule BN0L.

dualcountpro – a dual model counter in prolog 89

the number of relevant variables and is defined as a global variable and computed
during initialization. Finally, the corresponding blocking clause is computed and
added to the list of refutations (lines 26–27).

Part IV

C H R O N O L O G I C A L C O N F L I C T- D R I V E N C L A U S E
L E A R N I N G F O R P R O P O S I T I O N A L M O D E L

C O U N T I N G

14
PA P E R 3 : B A C K I N G B A C K T R A C K I N G

published. In: Theory and Applications of Satisfiability Testing – SAT 2019 – 22nd
International Conference, SAT 2019, Lisbon, Portugal, July 9–12, 2019, Proceedings. Ed.
by Mikolás Janota and Inês Lynce. Vol. 11628. Lecture Notes in Computer Science.
Springer, 2019, pp. 250–266. doi: 10.1007/978-3-030-24258-9_18.

authors . Sibylle Möhle and Armin Biere.

acknowledgments . Supported by the Austrian Science Fund (FWF) grant
S11408-N23 (RiSE) and by the LIT Secure and Correct Systems Lab funded by the
State of Upper Austria.

abstract. Non-chronological backtracking was considered an important and
necessary feature of conflict-driven clause learning (CDCL). However, a SAT solver
combining CDCL with chronological backtracking succeeded in the main track
of the SAT Competition 2018. In that solver, multiple invariants considered cru-
cial for CDCL were violated. In particular, decision levels of literals on the trail
were not necessarily increasing anymore. The corresponding paper presented at
SAT 2018 described the algorithm and provided empirical evidence of its correct-
ness, but a formalization and proofs were missing. Our contribution is to fill this
gap. We further generalize the approach, discuss implementation details, and em-
pirically confirm its effectiveness in an independent implementation.

14.1 introduction

Most state-of-the-art SAT solvers are based on the CDCL framework [125, 127]. The
performance gain of SAT solvers achieved in the last two decades is to some extent
attributed to combining conflict-driven backjumping and learning. It enables the
solver to escape regions of the search space with no solution.

Non-chronological backtracking during learning enforces the lowest decision
level at which the learned clause becomes unit and then is used as a reason. While
backtracking to a higher level still enables propagation of a literal in the learned
clause, the resulting propagations might conflict with previous assignments. Re-
solving these conflicts introduces additional work which is prevented by back-
tracking non-chronologically to the lowest level [157].

However, in some cases a significant amount of the assignments undone is re-
peated later in the search [149, 188], and a need for methods to save redundant
work has been identified. Chronological backtracking avoids redundant work by
keeping assignments which otherwise would be repeated at a later stage of the

93

https://doi.org/10.1007/978-3-030-24258-9_18

94 paper 3 : backing backtracking

Chronological and non-chronological CDCL:

Trail: The assignment trail contains neither complemen-
tary pairs of literals nor duplicates.

ConflictLower: The assignment trail preceding the current decision
level does not falsify the formula.

Non-chronological CDCL only:

Propagation: On every decision level preceding the current
decision level all unit clauses are propagated until
completion.

LevelOrder: The literals are ordered on the assignment trail in
ascending order with respect to their decision level.

ConflictingClause: At decision levels greater than zero the conflicting
clause contains at least two literals with the current
decision level.

Figure 14.1: The CDCL invariants listed in the box are usually considered crucial to CDCL.
By combining CDCL with chronological backtracking, the last three are vio-
lated.

search. As our experiments show, satisfiable instances benefit most from chrono-
logical backtracking. Thus this technique should probably also be seen as a method
to optimize SAT solving for satisfiable instances similar to [9, 156].

The combination of chronological backtracking with CDCL is challenging since
invariants classically considered crucial to CDCL cease to hold. Nonetheless, tak-
ing appropriate measures preserves the solver’s correctness, and the combina-
tion of chronological backtracking and CDCL appeared to be a winning strategy:
The SAT solver Maple_LCM_Dist_ChronoBT [150] was ranked first in the main
track of the SAT Competition 2018.

In Figure 14.1 we give invariants classically considered crucial to CDCL which
are relevant for the further discussion. Our aim is to demonstrate that although
some of them do not hold in [149], the solving procedure remains correct.

Clearly, if upon conflict analysis the solver jumps to a decision level higher
than the asserting level, invariant Propagation is violated. Measures to fix poten-
tial conflicting assignments were proposed in [149] which in addition violated
invariants LevelOrder and ConflictingClause. The algorithm’s correctness as well as
its efficiency were empirically demonstrated. However, a formal treatment with
proofs was not provided.

Our contribution. Our main contribution consists in providing a generalization of
the method presented in [149] together with a formalization. We prove that de-
spite violating some of the invariants given above, the approach is correct. Our
experiments confirm the effectiveness of chronological backtracking with an inde-
pendent implementation in our SAT solver CaDiCaL [19].

14.2 preliminaries 95

14.2 preliminaries

Let F be a formula over a set of variables V. A literal ` is either a variable v ∈ V
or its negation ¬v. The variable of ` is obtained by V(`). We denote by ` the com-
plement `, i.e., ` = ¬`, and assume ¬¬` = `. We consider formulae in conjunctive
normal form (CNF) defined as conjunctions of clauses which are disjunctions of
literals. We write C ∈ F if C is a clause in F and ` ∈ C for a literal ` occurring in C
interpreting F as a set of clauses and C as a set of literals. We use set notation for
formulae and clauses where convenient.

We call trail a sequence of literals with no duplicated variables and write I =
`1 . . . `n. We refer to an element ` of I by writing ` ∈ I interpreting I as a set
of literals and denote the set of its variables by V(I). Trails can be concatenated,
I = JK, assuming V(J) ∩ V(K) = ∅. We denote by τ(I, `) the position of the
literal ` on the trail I. A total assignment is a mapping from V to the truth values 1
and 0. A trail may be interpreted as a partial assignment where I(`) = 1 iff ` ∈ I.
Similarly, I(C) and I(F) are defined.

The residual of the formula F under the trail I, denoted by F|I , is obtained by
replacing in F the literals ` where V(`) ∈ I with their truth value. We define the
residual of a clause in an analogous manner. The empty clause and the literal
assigned truth value 0 are denoted by ⊥, the empty formula by >. If I(F) = >,
i.e., F|I = >, we say that I satisfies F and call I a model of F. If I(C) = ⊥ for
a clause C ∈ F, i.e., C|I = ⊥ and hence F|I = ⊥, we say that I falsifies C (and
therefore F) and call C the conflicting clause.

We call unit clause a clause {`} containing one single literal ` which we refer to as
unit literal. We denote by units(F) the sequence of unit literals in F and extend this
notion to the residual of F under I by writing units(F|I). We write ` ∈ units(F|I)
for referring to the unit literal ` in the residual of F under I.

14.3 generalizing cdcl with chronological backtracking

In classical CDCL SAT solvers based on non-chronological backtracking [125] the
trail reflects the order in which literals are assigned. The trail is used during con-
flict analysis to simplify traversal of the implication graph in reverse assignment
order and in general during backtracking to undo assignments in the proper re-
verse assignment order.

In CDCL with non-chronological backtracking, the trail is partitioned into sub-
sequences of literals between decisions in which all literals have the same decision
level. Each subsequence starts with a decision literal and extends until the last lit-
eral before the next decision. Literals assigned before any decision may form an
additional subsequence at decision level zero.

After adding chronological backtracking to CDCL as described in [149], the trail
is not partitioned in the same way but subsequences of the same decision level are
interleaved, while still respecting the assignment order.

Let δ : V 7→ N ∪ {∞} return the decision level of a variable v in the set of
variables V, with δ(v) = ∞ if v is unassigned. This function is updated whenever
a variable is either assigned or unassigned. The function δ is extended to literals `,
clauses C and trails I by defining δ(`) = δ(V(`)), δ(C) = max{δ(`) | ` ∈ C}
for C 6= ⊥, and δ(I) = max{δ(`) | ` ∈ I}. We further define δ(⊥) = 0.

Given a set of literals L, we denote by δ(L) = {δ(`) | ` ∈ L} the set con-
taining the decision levels of its elements. The function δ updated with decision

96 paper 3 : backing backtracking

level d assigned to V(`) is denoted by δ[` 7→ d]. Similarly, δ[I 7→ ∞] represents
the function δ where all literals on the trail I are unassigned. In the same manner,
δ[V 7→ ∞] assigns all variables in V to decision level ∞. We may write δ ≡ ∞ as
a shortcut. The function δ is left-associative. We write δ[L 7→ ∞][` 7→ b] to express
that the function δ is updated by first unassigning all literals in a sequence of
literals L and then assigning literal ` to decision level b.

For the sake of readability, we write J 6 I where J is a subsequence of I and the
elements in J have the same order as in I and J < I when furthermore J 6= I. We
denote by I6b the subsequence of I containing exactly the literals ` where δ(`) 6 b.

Due to the interleaved trail structure we need to define decision literals differ-
ently than in CDCL. We refer to the set consisting of all decision literals on I by
writing decs(I) and define a decision literal ` as

` ∈ decs(I) iff ` ∈ I, δ(`) > 0, ∀k ∈ I . τ(I, k) < τ(I, `) ⇒ δ(k) < δ(`) (14.1)

Thus, the decision level of a decision literal ` ∈ I is strictly higher than the decision
level of any literal preceding it on I. If C|I = {`} for a literal `, then ` is not a
decision literal. The set decs(I) can be restricted to decision literals with decision
level lower or equal to i by writing decs6i(I) = decs(I6i).

As in [155] we use an abstract representation of the assignment trail I by writ-
ing I = I0`1 I1 . . . `n In where {`1, . . . , `n} = decs(I). We denote by slice(I, i) the i-th
slice of I, i.e., the subsequence of I containing all literals ` with the same decision
level δ(`) = i. The i-th block, denoted by block(I, i), is defined as the subsequence
of I starting with the decision literal with decision level i and extending until the
last literal before the next decision:

slice(I, i) = I=i

block(I, i) = `i Ii

Note that in general I=i 6= Ii, since Ii (due to the interleaved structure of the
trail I) may contain literals with different decision levels, while this is not the case
in I=i. In particular, there might be literals with a lower decision level than some
literal preceding them on the trail. We call these literals out-of-order literals. Con-
trarily to classical CDCL with non-chronological backtracking, upon backtracking
to a decision level b, blocks must not be discarded as a whole, but only the literals
in slice(I, i) where i > b need to be unassigned.

Consider the trail I on the left hand side of Figure 14.2 over variables {1, . . . , 5}
(in DIMACS format) where τ represents the position of a literal on I and δ repre-
sents its decision level:

Literals 1 and 3 were propagated at decision level zero, literal 5 was propagated
at decision level one. The literals 3 and 5 are out-of-order literals: We have δ(2) =
1 > 0 = δ(3), whereas τ(I, 2) = 1 < 2 = τ(I, 3). In a similar manner, δ(4) = 2 >
1 = δ(5), and τ(I, 4) = 3 < 4 = τ(I, 5). Moreover, I61 = 1 2 3 5, decs(I) = 2 4,
decs61(I) = 2, slice(I, 1) = 2 5, and block(I, 1) = 2 3.

Upon backtracking to decision level one, the literals in slice(I, 2) are unassigned.
The resulting trail is visualized in the middle of Figure 14.2. Note that since
the assignment order is preserved, the trail still contains one out-of-order literal,
namely 3. Backtracking to decision level zero unassigns all literals in slice(I, 2)
and slice(I, 1) resulting in the trail in which all literals are placed in order depicted
on the right hand side.

14.4 calculus 97

τ 0 1 2 3 4

I 1 2 3 4 5

δ 0 1 0 2 1

τ 0 1 2 3

I 1 2 3 5

δ 0 1 0 1

τ 0 1

I 1 3

δ 0 0

Figure 14.2: In the trail I on the left, from the three trails shown, literals 3 and 5 are placed
out of order. In fact, their decision level δ is lower than the decision level
of a literal preceding them on the trail, i.e., with lower position τ. The trails
in the middle and on the right hand side show the results of backtracking
to decision levels 1 and 0. When backtracking to the backtrack level b, only
literals ` with δ(`) > b are removed from the trail, while the assignment
order is preserved.

True: (F, I, δ) ;True SAT if F|I = >

False: (F, I, δ) ;False UNSAT if exists C ∈ F with C|I = ⊥ and δ(C) = 0

Unit: (F, I, δ) ;Unit (F, I`, δ[` 7→ a]) if F|I 6= > and ⊥ 6∈ F|I and

exists C ∈ F with {`} = C|I and a = δ(C \ {`})

Jump: (F, I, δ) ;Jump (F ∧ D, PK`, δ[L 7→ ∞][` 7→ j]) if exists C ∈ F with

PQ = I and C|I = ⊥ such that c = δ(C) = δ(D) > 0 and

` ∈ D and `|Q = ⊥ and F |= D and j = δ(D \ {`}) and

b = δ(P) and j 6 b < c and K = Q6b and L = Q>b

Decide: (F, I, δ) ;Decide (F, I`, δ[` 7→ d]) if F|I 6= > and ⊥ 6∈ F|I and

units(F|I) = ∅ and V(`) ∈ V and δ(`) = ∞ and d = δ(I) + 1

Figure 14.3: In the transition system of our framework non-terminal states (F, I, δ) con-
sist of a CNF formula F, the current trail I and the decision level function δ.
The rules formalize termination (True and False), backtracking (Jump), unit
propagation (Unit) and picking decisions (Decide).

14.4 calculus

We devise our calculus as a transition system over a set of states S, a transition rela-
tion ;⊆S×S and an initial state s0. Non-terminal states are described by (F, I, δ)
where F denotes a formula over variables V, I denotes the current trail and δ refers
to the decision level function.

The initial state is given by s0 = (F, ε, δ0). In this context, F is the original for-
mula, ε denotes the empty trail and δ0 ≡ ∞. The terminal state is either SAT or UN-
SAT expressing satisfiability or unsatisfiability of F. The transition relation ; is
defined as the union of transition relations ;R where R is either True, False, Unit,
Jump or Decide. These rules are listed in Figure 14.3. We first explain the intuition
behind these rules before proving correctness in Section 14.5:

True / False. If F|I = >, F is satisfiable and the search terminates in the state SAT
(rule True). If F|I = ⊥, a clause C ∈ F exists where I(C) = ⊥. The conflict level

98 paper 3 : backing backtracking

is δ(C) = 0. Obviously I60(F) = ⊥ and consequently F is unsatisfiable. Then the
procedure terminates in state UNSAT (False).

Unit. Propagated unit literals are assigned the maximum decision level of their
reason which may be lower than the current decision level. Requiring that the
residual of F under I is conflict-free ensures that invariant ConflictLower holds.

Jump. We have F|I = ⊥, i.e., there exists a clause C ∈ F for which we have
I(C) = ⊥. Since the conflict level is δ(C) = c > 0, there is a decision left on I.
We assume to obtain a clause D implied by F (usually through conflict analysis)
with δ(D) = c > 0 whose residual is unit, e.g., {`}, at jump level j = δ(D \ {`}), the
second highest decision level in D. In fact, the residual of D under the trail is unit
at any backtrack level b where j 6 b < c 6 d, with d = δ(I) denoting the current
decision level. Using D as a reason, we may backtrack to any of these decision
levels. Remember that the decision levels on the trail do not have to be sorted
in ascending order and that upon backtracking only the literals in the i-th slice
with i > b need to be unassigned as discussed in Section 14.3. After backtracking
we propagate ` and assign it decision level j to obtain δ(PK`) = b.

Note. If the conflicting clause C contains exactly one literal ` assigned at con-
flict level c, its residual is unit at decision level c− 1. The solver therefore could
backtrack to decision level c− 1 and propagate `. An optimization is to use D = C
as reason saving the computational effort of conflict analysis. This corresponds to
learning C instead of a new clause D and is a special case of rule Jump. It is also
explicitly included in the pseudocode in [149].

Decide. If F is neither satisfied nor falsified and there are no unit literals in F|I , an
unassigned variable is assigned. Invariants ConflictLower and Propagation hold.

Example. As pointed out above, the conflicting clause C may contain one single lit-
eral ` assigned at decision level c. While according to the pseudocode in [149] back-
tracking is executed to the second highest decision level j in C, the implementation
Maple_LCM_Dist_ChronoBT backtracks chronologically to decision level c− 1,
which may be higher than j. We adopt this strategy in our own solver, but unlike
Maple_LCM_Dist_ChronoBT we eagerly propagate ` and assign it decision
level j, as described in the explanation of rule Jump above.

The authors of [149] focused on unit propagation and backtracking, and an in-
depth discussion of the case in which the conflicting clause contains exactly one
literal at conflict level is missing. We fill this gap and explain our calculus in detail
by means of an example for this case. We generated this example with our model-
based tester Mobical for CaDiCaL based on ideas in [8, 154]. Our example is
larger and provides a good intuition regarding the occurrence of multiple nested
decision levels on the trail as well as its effect on backtracking.

We represent variables by natural numbers and consider a formula F over vari-
ables {1, . . . , 48} as above where negative numbers encode negated variables. We
further use set notation for representing clauses. Consider the following assign-
ment trail excerpt where the trail I is represented as a sequence of literals, τ de-
notes the position of a literal on I and δ its decision level:

14.4 calculus 99

τ · · · 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I · · · 4 5 30 47 15 18 6 −7 −8 45 9 38 −23 17 44 −16

δ · · · 3 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6

C { −47, −17,−44 }
D { −30,−47, −18, 23 }

Initially, the literals are placed in order on I, i.e., they are sorted in ascending
order with respect to their decision level. At this point, a conflict occurs. The con-
flicting clause is C = {−47, −17, −44} depicted below the trail containing two
literals at conflict level c = δ(C) = 6, i.e., −17 and −44 depicted in boldface in
the above outline. Conflict analysis in our implementation learned the clause D =
{−30, −47, −18, 23} where δ(−30) = δ(−47) = δ(−18) = 4 and δ(23) = 6.
Since δ(D) = c = 6 and j = δ(D \ {23}) = 4, the solver in principle would be free
to backtrack to either decision level 4 or 5.

Let the solver backtrack chronologically to decision level 5 where D becomes unit,
specifically {23}. The position on the trail the solver backtracks to is marked with
a vertical dotted line. Accordingly all literals with decision level higher than 5 are
removed from I (literals at positions higher than 13). Then literal 23 is propagated.
The jump level is j = 4, hence literal 23 is assigned decision level 4 out of order.
Literal −38 is propagated due to reason(−38) = {−15, −23, −38} (not shown).
Since δ(−15) = δ(−23) = 4, literal−38 is assigned decision level 4. Then literal−9
is propagated with reason(−9) = {−45, 38, −9} with δ(−45) = 5 and δ(38) = 4.
Thus, −9 is assigned decision level 5. The resulting trail is

τ · · · 4 5 6 7 8 9 10 11 12 13 14 15 16

I · · · 4 5 30 47 15 18 6 −7 −8 45 23 −38 −9

δ · · · 3 4 4 4 4 4 5 5 5 5 4 4 5

where the literals 23 and −38 (depicted in boldface) are placed out of order on I.
Later in the search we might have the following situation:

τ · · · 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

I · · · 18 6 −7 −8 45 23 −38 −9 10 −11 13 16 −17−25 42 12 −41

δ · · · 4 5 5 5 5 4 4 5 6 7 5 4 4 4 4 5 5

C { 17, −42,−12 }

The first assignment after analyzing the last conflict is placed right after the dashed
vertical line. Again, a conflict occurs. Let C = {17,−42,−12} be the conflicting
clause. The conflict level is δ(C) = 5 and the decision level of I is δ(I) = 7.
Clause C contains exactly one literal at conflict level, namely −12 depicted in
boldface. The solver backtracks to decision level c − 1 = 4 marked with a thick
solid line. After removing from I all literals with decision level higher than 4 and
propagating literal −12, the resulting trail is

100 paper 3 : backing backtracking

τ · · · 9 10 11 12 13 14 15 16

I · · · 18 23 −38 16 −17−25 42 −12

δ · · · 4 4 4 4 4 4 4 4

Note that as discussed above we use D = C ∈ F without actually adding it.

14.5 proofs

For proving the correctness of our method, we first show that the system termi-
nates in the correct state which can be done in a straightforward manner. Proving
that the system always makes progress is more involved. Last we prove that our
procedure terminates by showing that no infinite sequence of states is generated.
By δ(decs(I)) we denote the set consisting of the decision levels of the set of deci-
sion literals on I. We start by proving the following invariants:

(1) ∀k, ` ∈ decs(I) . τ(I, k) < τ(I, `) =⇒ δ(k) < δ(`)

(2) δ(decs(I)) = {1, . . . , δ(I)}

(3) ∀n ∈N . F ∧ decs6n(I) |= I6n.

Lemma 14.1 (Invariants). Invariants (1) – (3) hold in non-terminal states.

Proof. The proof is carried out by induction over the number of rule applications.
We assume Invariants (1) – (3) hold in a non-terminal state (F, I, δ) and show that
they are still met after the transition to another non-terminal state for all rules.

Unit: The trail I is extended by a literal `. We need to show that ` is not a decision
literal. To this end it is sufficient to consider the case where a > 0. There exists
a clause C ∈ F with {`} = C|I . Since a = δ(C \ {`}), there exists a literal k ∈ C
where k 6= ` and such that δ(k) = a. Obviously, k was assigned prior to ` and
τ(I, k) < τ(I, `). Since δ(k) = δ(`) and by the definition of decision literal in
Equation 14.1, ` is not a decision literal. The decisions remain unchanged, and
Invariants (1) and (2) hold after executing rule Unit.

We have F ∧ decs6n(I) |= C \ {`} and F ∧ decs6n(I) |= C, therefore, by modus
ponens we get F ∧ decs6n(I) |= `. Since ` is not a decision literal, as shown above,
F ∧ decs6n(I`) ≡ F ∧ decs6n(I) |= I6n. Hence, F ∧ decs6n(I`) |= (I`)6n, and In-
variant (3) holds after executing rule Unit.
Jump: We first show that K contains no decision literal. In fact, the trail I is of the
form I = PQ, and K is obtained from Q by removing all literals with decision level
greater than b. In particular, the order of the remaining (decision) literals remains
unaffected, and Invariant (1) still holds. We further have δ(K) 6 δ(P) = b. Since
∀p ∈ P, k ∈ K . τ(PK, p) < τ(PK, k) and by the definition of decision literals in
Equation 14.1, the decision literal with decision level b is contained in P. Therefore,
since K contains no (decision) literal with decision level greater than b, it contains
no decision literal.

Now we show that ` is not a decision literal either. As in the proof for rule Unit,
it is sufficient to consider the case where j > 0. There exists a clause D where
F |= D such that δ(D) = c and a literal ` ∈ D for which `|Q = ⊥ and ` ∈ Q.
Since j = δ(D \ {`}), δ(`) = δ(D) = c > b, and ` 6∈ K. Instead, ` ∈ L, and ` is
unassigned during backtracking to any decision level smaller than c, i.e., ` 6∈ PK.
Furthermore, there exists a literal k ∈ D where k 6= ` and such that δ(k) = j which

14.5 proofs 101

precedes ` on the trail PK`. Therefore, following the argument in rule Unit, literal `
is not a decision literal, and since the decisions remain unchanged, Invariants (1)
and (2) hold after applying rule Jump.

Invariant (3) holds prior to applying rule Jump, i.e., F ∧ decs6n(I) |= I6n. We
have that F |= D, and therefore F ∧ D ≡ F. Since I = PQ, PK < I and obviously
F ∧ decs6n(PK) =⇒ (PK)6n. From j = δ(D \ {`}) we get D|PK = {`}. Repeating
the argument in the proof for rule Unit by replacing I by PK and C by D, we
have that F ∧ decs6n(PQ`) |= (PQ`)6n, and Invariant (3) is met after executing
rule Jump.
Decide: Literal ` is a decision literal by the definition of a decision literal in Equa-
tion 14.1: It is assigned decision level d = δ(I) + 1, and ∀k ∈ I . δ(k) < δ(`).
Further, ∀k ∈ I` . k 6= ` =⇒ τ(I`, k) < τ(I`, `). Since ` ∈ decs(I`), we have
δ(decs(I`)) = {1, . . . , d}, and Invariants (1) and (2) hold after applying rule De-
cide.

Since ` is a decision, F∧ decs6n(I`) ≡ F∧ decs6n(I)∧ `6n and since Invariant (3)
holds prior to applying Decide, obviously F∧decs6(I`) |= I6n ∧ `6n ≡ (I`)6n, and
Invariant (3) is met after applying rule Decide.

Proposition 14.1 (Correctness of Terminal State). Search terminates in the correct
state, i.e., if the terminal state is SAT, then F is satisfiable, and if the terminal state is
UNSAT, then F is unsatisfiable.

Proof. We show that the terminal state is correct for all terminal states.
SAT: We must show that an unsatisfiable formula can not be turned into a sat-
isfiable one by any of the transition rules. Only equivalence-preserving transfor-
mations are executed: Rules Unit and Decide do not affect F, and in rule Jump a
clause implied by F is added. Therefore, if the system terminates in state SAT, F is
indeed satisfiable.
UNSAT: It must be proven that a satisfiable formula can not be made unsatisfiable.
Only equivalence-preserving transformations are executed. Rules Unit and Decide
do not affect F, and in rule Jump a clause implied by F is added. We need to show
that if rule False is applied, the formula F is unsatisfiable. We have to consider
Invariant (3) for n = 0. There exists a clause C ∈ F such that I60(C) = ⊥, which
leads to F ∧ decs60(F) ≡ F |= I60(C) = ⊥.

Proposition 14.2 (Progress and Termination). Search makes progress in non-termi-
nal states (a rule is applicable) and always reaches a terminal state.

Proof. We first prove progress by showing that in every non-terminal state a tran-
sition rule is applicable. Then we prove termination by showing that no infinite
state sequence is generated.
Progress: We show that in every non-terminal state a transition rule is applica-
ble. The proof is by induction over the number of rule applications. Assume we
reached a non-terminal state (F, I, δ). We show that one rule is applicable.

If F|I = >, rule True can be applied. If F|I = ⊥, there exists a clause C ∈ F such
that C|I = ⊥. The conflict level δ(C) = c may be either zero or positive. If c = 0,
rule False is applicable. Now assuming c > 0 we obtain with Invariant (3):

F ∧ decs6c(I) ≡ F ∧ decs6c(I) ∧ I6c |= I6c.

Due to I6c(F) ≡ ⊥ we further have F ∧ I6c ≡ F ∧ decs6c(I) ≡ ⊥. By simply pick-
ing ¬D = decs6c(I) we obtain F∧¬D ≡ F∧¬D∧ I6c ≡ ⊥, thus F |= D. Clause D

102 paper 3 : backing backtracking

contains only decision literals and δ(D) = c. From Invariants (1) and (2) we know
that D contains exactly one decision literal for each decision level in {1, . . . , c}. We
choose ` ∈ D such that δ(`) = c. Then the asserting level is given by j = δ(D \ {`})
and we pick some backtrack level b where j 6 b < c. Without loss of generalization
we assume the trail to be of the form I = PQ where δ(P) = b. After backtracking
to decision level b, the trail is equal to I6b = PK where K = Q6b. Since D|PK = {`},
all conditions of rule Jump hold.

If F|I 6∈ {>,⊥}, there are still unassigned variables in V. If there exists a
clause C ∈ F where C|I = {`}, the preconditions of rule Unit are met. If in-
stead units(F|I) = ∅, there exists a literal ` with V(`) ∈ V and δ(`) = ∞, and the
preconditions of rule Decide are satisfied.

In this argument, all possible cases are covered and thus in any non-terminal
state a transition rule can be executed, i.e., the system never gets stuck.

Termination: To show termination we follow the arguments in [124, 155] or more
precisely the one in [28], except that our blocks (as formalized above with the block
notion) might contain literals with different decision levels, i.e., subsequences of
literals of the same decision level are interleaved as discussed in Section 14.3. This
has an impact on the backtracking procedure adopted in rule Jump, where after
backtracking to the end of block(I, b), trail P is extended by K = Q6b As discussed
in the proof of Lemma 14.1, K contains no decision literals. Apart from that, the
same argument applies as in [28], and Search always terminates.

14.6 algorithm

The transition system presented in Section 14.4 can be turned into an algorithm
described in Figure 14.4 providing a foundation for our implementation. Unlike
in [149], we refrain from giving implementation details but provide pseudocode
on a higher abstraction level covering exclusively chronological backtracking.

Search: The main function Search takes as input a formula F, a set of variables V,
a trail I and a decision level function δ. Initially, I is equal to the empty trail and
all variables are assigned decision level ∞.

If all variables are assigned and no conflict occurred, it terminates and returns
SAT. Otherwise, unit propagation by means of Propagate is executed until either
a conflict occurs or all units are propagated.

If a conflict at decision level zero occurs, Search returns UNSAT, since conflict
analysis would yield the empty clause even if the trail contains literals with deci-
sion level higher than zero. These literals are irrelevant for conflict analysis (line 7),
and they may be removed from I prior to conflict analysis without affecting the
computation of the learned clause. The resulting trail contains only propagation
literals, and the new (current) decision level is zero upon which the empty clause
is learned.

If a conflict at a decision level higher than zero occurs, conflict analysis (function
Analyze) is executed. If no conflict occurs and there are still unassigned variables,
a decision is taken and a new block started.

Propagate: Unit propagation is carried out until completion. Unlike in CDCL
with non-chronological backtracking, the propagated literals may be assigned a
decision level lower than the current one (line 3). In this case invariant LevelOrder
presented in Section 14.1 does not hold anymore. Propagate returns the empty
clause if no conflict occurs and the conflicting clause otherwise.

14.6 algorithm 103

Input: formula F, set of variables V, trail I, decision level function δ

Output: SAT iff F is satisfiable, UNSAT otherwise

Search (F)
1 V := V(F)
2 I := ε

3 δ := ∞
4 while there are unassigned variables in V do
5 C := Propagate (F, I, δ)
6 if C 6= ⊥ then
7 c := δ(C)
8 if c = 0 then return UNSAT
9 Analyze (F, I, C, c)

10 else
11 Decide (I, δ)
12 return SAT

Propagate (F, I, δ)
1 while some C ∈ F is unit {`} under I do
2 I := I`
3 δ(`) := δ(C \ {`})
4 for all clauses D ∈ F containing ¬` do
5 if I(D) = ⊥ then return D
6 return ⊥

Analyze (F, I, C, c)
1 if C contains exactly one literal at decision level c then
2 ` := literal in C at decision level c
3 j := δ(C \ {`})
4 else
5 D := Learn (I, C)
6 F := F ∧ D
7 ` := literal in D at decision level c
8 j := δ(D \ {`})
9 pick b ∈ [j, c− 1]

10 for all literals k ∈ I with decision level > b do
11 assign k decision level ∞
12 remove k from I
13 I := I`
14 assign ` decision level j

Figure 14.4: This is the algorithm for CDCL with chronological backtracking, which differs
from its non-chronological backtracking version as follows: Propagated liter-
als ` are assigned a decision level which may be lower than the current one
(line 3 in Propagate). The conflict level may be lower than the current decision
level (line 7 in Search). If the conflicting clause contains only one literal at con-
flict level, it is used as reason and no conflict analysis is performed (lines 1–3

in Analyze). Picking the backtracking level is usually non-deterministic (line 9

in Analyze). Backtracking involves removing from the trail I all (literals in)
slice(I, i) with i > b (line 12 in Analyze).

104 paper 3 : backing backtracking

Analyze: If the conflict level is higher than zero and the conflicting clause C con-
tains exactly one literal ` at conflict level c, then C can be used as reason instead
of performing conflict analysis (lines 1–3). The idea is to save the computational
effort of executing conflict analysis and adding redundant clauses.

Otherwise, a clause D is learned as in CDCL, e.g., the first unique implication
point (1st-UIP) containing exactly one literal ` at conflict level. Let j be the lowest
decision level at which D (or C, if it contains exactly one literal at conflict level) be-
comes unit. Then according to some heuristics the solver backtracks to a decision
level b ∈ [j, c− 1].

This for instance, can be used to retain part of the trail, to avoid redundant work
which would repeat the same assignments after backtracking. Remember that the
decision levels on the trail may not be in ascending order. When backtracking
to b, the solver removes all literals with decision level higher than b from I, i.e.,
all i-th slices with i > b.

14.7 implementation

We added chronological backtracking to our SAT solver CaDiCaL [19] based on
the rules presented in Section 14.4, in essence implementing the algorithm pre-
sented in Figure 14.4, on top of a classical CDCL solver. This required the following
four changes, similar to those described in [149] and implemented in the source
code which was submitted by the authors to the SAT 2018 competition [150]. This
list is meant to be comprehensive and confirms that the changes are indeed local.

Asserting Level. During unit propagation the decision level a = δ(C\{`}), also
called asserting level, of propagated literals ` needs to be computed based on the
decision level of all the falsified literals in the reason clause C. This is factored
out in a new function called assignment_level1, which needs to be called during
assignment of a variable if chronological backtracking is enabled.

Conflict Level. At the beginning of the conflict analysis the current conflict level c
is computed in a function called find_conflict_level1. This function also deter-
mines if the conflicting clause has one or more falsified literals on the conflict level.
In the former case we can simply backtrack to backtrack level b = c− 1 and use
the conflicting clause as reason for assigning that single literal on the conflict level.
Even though not described in [149] but implemented in their code, it is also nec-
essary to update watched literals of the conflict. Otherwise important low-level
invariants are violated and propagation might miss falsified clauses later. In or-
der to restrict the changes to the conflict analysis code to a minimum, it is then
best to backtrack to the conflict level, if it happens to be smaller than the current
decision level. The procedure for deriving the learned clause D can then remain
unchanged (minimizing the 1st-UIP clause).

Backtrack Level. Then we select the backtrack level b with j 6 b < c, where j is the
minimum backjump level j (the second largest decision level in D) in the function
determine_actual_backtrack_level1. By default we adopted the heuristic from
the original paper [149] to always force chronological backtracking (b = c− 1) if
c− j > 100 (T in [149]) but in our implementation we do not prohibit chronological
backtracking initially (C in [149]). Beside that we adopted a variant of reusing the
trail [188] as follows. Among the literals on the trail assigned after and including

1 Please refer to the source code of CaDiCaL provided at http://fmv.jku.at/chrono.

http://fmv.jku.at/chrono

14.8 experiments 105

0 50 100 150 200 250

0
10

00
20

00
30

00
40

00
50

00

●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●●
●
●●●

●●●
●●●●●●●

●●
●●●●

●●
●
●●
●
●
●

●●

●
●●
●●
●
●●●

●
●
●●●

●

●

●
●
●
●
●

●●

● cadical−limited−chronological−reusetrail
cadical−limited−chronological
cadical−always−chronological
cadical−non−chronological
maple−lcm−dist−chronological−2018
maple−lcm−dist−2017

Figure 14.5: Cactus plot for benchmarks of the main track of the SAT Competition 2018.

the decision at level j + 1 we find the literal k with the largest variable score and
backtrack to b with b + 1 = δ(k).
Flushing. Finally, the last required change was to flush literals from the trail with
decision level larger than b but keep those smaller or equal than b. Instead of using
an extra data structure (queue) as proposed in [149] we simply traverse the trail
starting from block b + 1, flushing out literals with decision level larger than b. It
is important to make sure that all the kept literals are propagated again (resetting
the propagated1 level).

14.8 experiments

We evaluated our implementation on the benchmarks from the main track of the
SAT Competition 2018 and compare four configurations of CaDiCaL [19]. We also
consider maple-lcm-dist-2017 [200], also called Maple_LCM_Dist, which won the
main track of the SAT Competition 2017, on which maple-lcm-dist-chronological-
2018 [150], also called Maple_LCM_Dist_ChronoBT, is based. We consider the
latter as reference implementation for [149]. It won the main track of the SAT
Competition 2018 on the considered benchmark set.

The experiments were executed on our cluster where each compute node has
two Intel Xeon E5-2620 v4 CPUs running at 2.10 GHz with turbo-mode disabled.
Time limit was set to 3600 seconds and memory limit to 7 GB. We used version
“0nd” of CaDiCaL. Compared to the SAT Competition 2018 version [19] it in-
corporates new phase saving heuristics and cleaner separation between stabiliz-
ing and non-stabilizing phases [156]. This gave substantial performance improve-
ments on satisfiable formulae [20]. Nevertheless adding chronological backtrack-
ing improves performance even further as the cactus plot in Figure 14.5 and Ta-
ble 14.1 show.

The default version cadical-limited-chronological-reusetrail is best (preliminary
experiments with CaDiCaL optimized for SAT Race 2019 did not confirm this

106 paper 3 : backing backtracking

Table 14.1: Solved instances of the main track of the SAT Competition 2018.

solver configurations
solved instances

total SAT UNSAT

cadical-limited-chronological-reusetrail 261 155 106

cadical-limited-chronological 253 147 106

cadical-always-chronological 253 148 105

cadical-non-chronological 250 144 106

maple-lcm-dist-chronological-2018 236 134 102

maple-lcm-dist-2017 226 126 100

result though). It uses the limit C = 100 to chronologically backtrack if c− j > 100
and further reuses the trail as explained in the previous section. For cadical-limited-
chronological reusing the trail is disabled and less instances are solved. Quite re-
markable is that configuration cadical-always-chronological ranks third, even though
it always enforces chronological backtracking (b = c − 1). On these benchmarks
there is no disadvantage in always backtracking chronologically! The original clas-
sical CDCL variant cadical-non-chronological comes next followed by the reference
implementation for chronological backtracking maple-lcm-dist-chronological-2018
and then maple-lcm-dist-2017 last, confirming the previous results in [149]. Source
code and experimental data can be found at http://fmv.jku.at/chrono.

14.9 conclusion

The success of Maple_LCM_Dist_ChronoBT [150] is quite remarkable in the
SAT Competition 2018, since the solver violates various invariants previously con-
sidered crucial for CDCL solvers (summarized in Figure 14.1). The corresponding
paper [149] however was lacking proofs. In this paper we described and formal-
ized a framework for combining CDCL with chronological backtracking. Under-
standing precisely which invariants are crucial and which are redundant was the
main motivation for this paper. Another goal was to empirically confirm the effec-
tiveness of chronological backtracking within an independendent implementation.

Our main contribution is to precisely define the concepts introduced in [149].
The rules of our framework simplify and generalize chronological backtracking.
We may relax even more CDCL invariants without compromising the procedure’s
correctness. For instance first experiments show that during the application of
the Unit rule it is not necessary to require that the formula is not falsified by the
trail. Similarly, requiring the formula not to be falsified appears to be sufficient for
rule Decide (no need to require that there are no units).

Our experiments confirm that combining chronological backtracking and CDCL
has a positive impact on solver performance. We have further explored reusing
the trail [188] during backjumping, which requires a limited form of chronological
backtracking, too. Our experiments also show that performing chronological back-
tracking exclusively does not degrade performance much and thus for instance
has potential to be used in propositional model counting. Furthermore, besides

http://fmv.jku.at/chrono

14.9 conclusion 107

counting, possible applications may be found in SMT and QBF. We further plan to
investigate the combination of these ideas with total assignments following [92].

15
D I S C U S S I O N O F PA P E R 3

In this chapter, we first recall the main contributions of the paper in Section 15.1.
One particularity of chronological CDCL is that—unlike in CDCL with non-chro-
nological backtracking—a conflict may occur at a decision level which is lower
than the current one. In our rules, we do not specify how the conflict is ana-
lyzed and the conflict clause learnt, and in our implementation we backtrack to
the conflict level before analyzing the conflict. However, this backtracking step
is not needed from a technical point of view as discussed in Section 15.2. In the
paper we mentioned that reusing the trail did not prove advantageous in combina-
tion with chronological CDCL after optimizing CaDiCaL for the SAT Race 2019.
We precise the argument in Section 15.3 and provide the experimental results we
could not include in the paper due to space limitations.

15.1 main contributions

One goal was to investigate the suitability of chronological CDCL [149] in the
context of propositional model counting (#SAT). Our intuition was that remaining
in the proximity of the currently investigated search space also after a conflict,
fewer assignments might be repeated saving redundant work.

We formulated invariants inherent to CDCL with non-chronological backtrack-
ing and identified those violated by backtracking chronologically after learning
a conflict clause. Particularly the violation of invariant LevelOrder requires signif-
icant changes to the structure of the trail, since its literals are not ordered in as-
cending order with respect to their decision level anymore, and literals at the same
decision level might occur in different blocks. Consequently, during backtracking,
blocks are not discarded as a whole but only the literals at decision levels higher
than the backtrack level are unassigned. Our slice-based trail structure provides a
solution to this issue and facilitates referring to literals at the same decision level.

We formalized chronological CDCL. The rules capture termination with a con-
flict or a satisfying assignment, unit propagation, decisions, and CDCL with chro-
nological backtracking. In the algorithm by Nadel and Ryvchin, backtracking after
a conflict always occurs to the assertion level. In contrast, the jump level in our
rule Jump can be freely chosen between and including the assertion level and
the conflict level minus one, generalizing the method by Nadel and Ryvchin. We
further provide a formal proof of correctness of our calculus.

Finally, we turned our rules into an algorithm providing the basis for their imple-
mentation in the SAT solver CaDiCaL [20], which won the SAT Track and became
second in the SAT + UNSAT Track of the SAT Race 2019.1 Since then, our rules

1 https://satcompetition.github.io/2019/

109

https://satcompetition.github.io/2019/

110 discussion of paper 3

become an integrative part of our SAT solvers. The new SAT solver Kissat [22]
won the Main Track UNSAT and the Main Track ALL and became second in the
Main Track SAT and third in the Planning Track of the SAT Competition 2020.2

The SAT solver Kissat [23] became second in the Main Track ALL and third in
the Main Track UNSAT of the SAT Competition 2021.3

15.2 conflict at lower decision level

In our implementation, if a conflict occurs at a smaller decision level than the
current one, we backtrack to the conflict level before analyzing the conflict. This
enables us to use the same code for deriving the learnt clause independently of
whether the conflict occurred at the maximum or a lower decision level. Techni-
cally, conflict analysis could also be executed without backtracking to the conflict
level. The assignments at decision levels higher than the conflict level are not in-
volved in the conflict and therefore neither in conflict analysis and can simply be
ignored. But this is equivalent to backtracking to the conflict level prior to conflict
analysis, and the learnt clause and the trail after executing rule Jump would be
the same as shown in the following example.

Example 15.1 (Conflict analysis without backtracking to the conflict level). Con-
sider the propositional formula

F = (a ∨ b)︸ ︷︷ ︸
C1

∧ (¬b ∨ c)︸ ︷︷ ︸
C2

∧ (¬b ∨ ¬d ∨ e)︸ ︷︷ ︸
C3

∧ (¬d ∨ ¬ f ∨ g)︸ ︷︷ ︸
C4

∧

(¬a ∨ ¬h ∨ i)︸ ︷︷ ︸
C5

∧ (¬a ∨ ¬h ∨ ¬i)︸ ︷︷ ︸
C6

∧ (¬c ∨ h ∨ j)︸ ︷︷ ︸
C7

∧ (¬c ∨ h ∨ ¬j)︸ ︷︷ ︸
C8

defined over the set of variables V = {a, b, c, d, e, f , g, h, i, j}. We represent the trail sim-
ilarly to the paper, i. e., τ, I, and δ denote the trail position, the literals on the trail, and
their decision level, respectively. Let the current trail be

τ 1 2 3 4 5 6 7 8 9

I ad bd cC2 dd eC3 f d gC4 hd iC5

δ 1 2 2 3 3 4 4 5 5

The clause C6 is falsified, and rule Jump is applied. The conflict level is δ(C6) = 5, which is
the greatest decision level on the trail. Conflict analysis yields the clause D1 = (¬a∨¬h)
with δ(D1) = 5, which is added to F. The assertion level—called jump level in the paper—
is one. The solver backtracks to decision level δ(C6) − 1 = 4 and propagates ¬h with
reason D1 at decision level one. Now the literal j is propagated with reason C7 and assigned
decision level δ(C7 \ {j}) = 2. The resulting trail is given by

τ 1 2 3 4 5 6 7 8 9

I ad bd cC2 dd eC3 f d gC4 ¬hD1 jC7

δ 1 2 2 3 3 4 4 1 2

The literals ¬h and k, marked in red, are out of order: we have τ(I, g) = 7 < 8 = τ(I,¬h)
but δ(g) = 4 > 1 = δ(¬h) and τ(I, g) = 7 < 9 = τ(I, j) and δ(g) = 4 > 2 = δ(j).
Again, a conflict occurs. The conflicting clause is C8 with δ(C8) = 2 < 4 = δ(I).

2 https://satcompetition.github.io/2020/
3 https://satcompetition.github.io/2021/

https://satcompetition.github.io/2020/
https://satcompetition.github.io/2021/

15.2 conflict at lower decision level 111

conflict analysis without backtracking to conflict level . Sup-
pose we execute rule Jump without backtracking to the conflict level before analyzing the
conflict. The implication graph [127] is very useful in reading off the resolution steps
executed during conflict analysis. It is a directed acyclic graph whose nodes represent the
assigned literals and incoming edges represent propagations and are labeled with the reason
of the literal represented by the node they are pointing to. Decision nodes have no incoming
edge, and the special node κ represents a conflict. The implication graph corresponding to
our example is shown below on the left hand side.

a ¬h

b c j κ

d e

f g

D1

C2

C3C3

C4
C4

C7
C7

C8

C8

C8

(¬c ∨ h ∨ ¬j) (¬c ∨ h ∨ j)

(¬c ∨ h)

The out-of-order propagations are highlighted in red and dashed. The computation of the
conflict clause occurs by traversing the implication graph in reverse assignment order and
is shown on the right hand side: the conflicting clause C8 is resolved with C7, the reason
of j. The resolvent (¬c ∨ h) contains one single literal at decision level two, namely ¬c,
and we add D2 = (¬c ∨ h) to F. The assertion level is one, the second highest decision
level in D2, and backtracking occurs to conflict level minus one, which is one. Backtracking
to decision level one involves unassigning all literals at decision levels greater than one.
The resulting trail is ad¬cD1 , under which the residual of D2 becomes the unit (¬c). After
propagating ¬c with reason D2, the trail becomes

τ 1 2 3

I ad ¬hD1 ¬cD2

δ 1 1 1

All literals on the trail are now in order. However, this is a particularity of this example
and need not be the case after executing rule Jump in general.

conflict analysis after backtracking to conflict level . Now con-
sider again the situation above right after propagating j with reason C7, where a conflict
in C8 is obtained but let us backtrack to the conflict level two before analyzing the conflict.
The resulting trail contains only literals at decision levels one and two:

τ 1 2 3 4 5

I ad bd cC2 ¬hD1 jC7

δ 1 2 2 1 2

The corresponding implication graph and the resolution step for determining the conflict
clause are shown below on the left and right hand side, respectively.

112 discussion of paper 3

a ¬h

b c j κ

D1

C2

C7
C7

C8

C8

C8

(¬c ∨ h ∨ ¬j) (¬c ∨ h ∨ j)

(¬c ∨ h)

The implication graph is precisely the upper part of the implication graph shown above.
Since the lower part of this implication graph was not involved in the conflict, the same
conflict clause is obtained independently of whether backtracking to the conflict level oc-
curred prior to conflict analysis or not. The resolution step executed for computing D2 is
shown on the right hand side and coincides with the one obtained previously.

15.3 the impact of reusing the trail

In the experiments reported in the paper, among the configurations of CaDiCaL
supporting chrononological CDCL, the best solver performance was achieved in
combination with reusing the trail [188] during chronological backtracking, as
shown in the cumulative distribution function (CDF) plot corresponding to the
cactus plot in the paper and visualized in Figure 15.1 above. The x-axis denotes
the execution time in seconds and the y-axis denotes the number of solved in-
stances. The higher a curve, the better the performance, and the upper left corner
is best.

However, in the same experiments conducted with CaDiCaL optimized for
the SAT Race 2019, reusing the trail turned out to be not that useful but not
very harmful, either. In fact, cadical-limited-chronological-reusetrail performed even
worse than cadical-non-chronological, as can be read off the CDF plot in Figure 15.1
below: the configuration cadical-limited-chronological performed best among all
CaDiCaL configurations but worst if combined with reusing the trail. In the rest
of this section, we focus on the results for CaDiCaL submitted to the SAT Com-
petition 2018 and CaDiCaL optimized for SAT Race 2019.

The results for the version of CaDiCaL optimized for SAT Race 2019 are given
in Table 15.1 with the numbers in brackets denoting the difference to the ver-
sion of the paper. Considering that cadical-limited-chronological and cadical-always-
chronological solved more instances than cadical-non-chronological, it looks like
reusing the trail in combination with chronological CDCL did even harm solver
performance. Comparing the number of instances solved by cadical-limited-chrono-
logical and cadical-limited-chronological-reusetrail is particularly interesting, since
the latter differs from the former only in reusing the trail. Adding it to cadical-
limited-chronological resulted in solving ten fewer instances, four satisfiable and
six unsatisfiable ones. While cadical-limited-chronological improved most after op-
timization for SAT Race 2019, and the other configurations achieved a significant
increase in the number of solved instances as well, cadical-limited-chronological-
reusetrail improved least, even less than cadical-non-chronological.

The last column in Table 15.1 refers to the number of instances solves exclusively
by the corresponding solver configuration. Except for cadical-limited-chronological-
reusetrail and the Maple configurations, these numbers increased as well. Notice
the significant decrease for cadical-limited-chronological-reusetrail, which is higher
than the increase for cadical-limited-chronological.

15.3 the impact of reusing the trail 113

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●●●● ●●●●●● ●●●●

●●●●
●●●●●

●●● ●● ● ● ● ●● ● ●●●●● ●●● ● ● ●●●● ● ● ● ● ● ● ●●

● cadical−limited−chronological−reusetrail
cadical−limited−chronological
cadical−always−chronological
cadical−non−chronological
maple−lcm−dist−chronological−2018
maple−lcm−dist−2017

CaDiCaL main-0nd

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●● ●●●●●●

●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●●●

●● ●●●●
●●●● ●● ●●● ●●●●●●●● ●●● ● ● ● ● ●●● ● ● ● ●●● ● ● ●●

● cadical−limited−chronological
cadical−always−chronological
cadical−non−chronological
cadical−limited−chronological−reusetrail
maple−lcm−dist−chronological−2018
maple−lcm−dist−2017

CaDiCaL main-sr2019

Figure 15.1: Cumulative distribution function (CDF) plot visualizing the number of solved
instances of the main track of the SAT Competition 2018 by the version
of CaDiCaL in the paper (above) and optimized for SAT Race 2019 (below).

114 discussion of paper 3

Table 15.1: Number of solved instances in the main track of the SAT Competition 2018

by CaDiCaL optimized for the SAT Race and in the paper (in brackets).

solver configurations

solved instances

total sat unsat uniq

cadical-limited-chronological 277 (+24) 164 (+17) 113 (+7) 4 (2)

cadical-always-chronological 272 (+19) 163 (+15) 109 (+4) 2 (2)

cadical-non-chronological 270 (+20) 160 (+16) 110 (+4) 1 (0)

cadical-limited-chronological-reusetrail 267 (+6) 160 (+5) 107 (+1) 1 (7)

maple-lcm-dist-chronological-2018 236 134 102 4 (3)

maple-lcm-dist-2017 226 126 100 1 (0)

The order with respect to the number of solved instances of the configura-
tions of CaDiCaL without reusing the trail remained the same: cadical-limited-
chronological performed best followed by cadical-always-chronological and cadical-
non-chronological. Notably, the percentage increase of the number of solved in-
stances amounts to 7.51% for cadical-always-chronological, 8.00% for cadical-non-
chronological, and 9.49% for cadical-limited-chronological, but only to 2.30% for cadi-
cal-non-chronological. This confirms the positive impact on solver performance of
chronological backtracking for the instances of the main track of the SAT Compe-
tition 2018, but raises questions concerning reusing the trail.

16
PA P E R 4 : C O M B I N I N G C O N F L I C T- D R I V E N C L A U S E
L E A R N I N G A N D C H R O N O L O G I C A L B A C K T R A C K I N G F O R
P R O P O S I T I O N A L M O D E L C O U N T I N G

published. In: GCAI 2019. Proceedings of the 5th Global Conference on Artificial
Intelligence, Bozen/Bolzano, Italy, 17–19 September 2019. Ed. by Diego Calvanese and
Luca Iocchi. Vol. 65. EPiC Series in Computing. EPiC Series in Computing. Easy-
Chair, 2019, pp. 113–126. doi: 10.29007/vgg4.

authors . Sibylle Möhle and Armin Biere.

acknowledgments . Supported by the Austrian Science Fund (FWF) grant
S11408-N23 (RiSE) and by the LIT Secure and Correct Systems Lab funded by the
State of Upper Austria.

abstract. In propositional model counting, also named #SAT, the search space
needs to be explored exhaustively, in contrast to SAT, where the task is to deter-
mine whether a propositional formula is satisfiable. While state-of-the-art SAT
solvers are based on non-chronological backtracking, it has also been shown that
backtracking chronologically does not significantly degrade solver performance.
Hence investigating the combination of chronological backtracking with conflict-
driven clause learning (CDCL) for #SAT seems evident. We present a calculus
for #SAT combining chronological backtracking with CDCL and provide a formal
proof of its correctness.

16.1 introduction

The task of computing the number of models of a propositional formula, also
referred to as #SAT, has various applications in hardware and software verifica-
tion [26, 36, 73, 74, 104] as well as cryptography [106]. Classical applications are
found in the area of probabilistic reasoning [167] as well as Bayesian networks [13,
120, 174] which are adopted in medical diagnosis and planning. A counting char-
acterization of diagnoses is presented in [112]. Propositional model counting finds
further applications in product configuration [110, 203] and planning [10, 202].

Challenges in model counting. In contrast to SAT solving, where the search ter-
minates as soon as a satisfying variable assignment is found, in #SAT the search
space needs to be explored exhaustively. State-of-the-art SAT solvers implement
conflict-driven clause learning (CDCL) [128, 146], i.e., in case of a conflict they
learn a clause which might be used to backjump or backtrack non-chronologically to
a potentially much smaller decision level by unassigning all literals at greater de-

115

https://doi.org/10.29007/vgg4

116 on backtracking chronologically in model counting

cision levels. This allows them to escape search space regions without solution. In
the context of #SAT, however, backjumping might cause an erroneous model count
since already counted models might be found again.

This problem does not occur in the Davis-Putnam-Logeman-Loveland (DPLL)
algorithm [60] where only chronological backtracking, i.e., backtracking to the previ-
ous decision level, is applied. However, the downside of DPLL consists of the fact
that the solver is not able to escape regions of the search space without solution
easily.

One therefore might ask whether chronological backtracking and CDCL might
be combined in order to benefit from the strengths of both methods. A second
motivation is given by the fact that CDCL may lead to redundant work since after
backjumping assignments discarded might be repeated [188] which has a greater
negative impact on solver performance in #SAT.

Combining CDCL and chronological backtracking. A partial answer to this ques-
tion was provided in [149]. In this paper, chronological backtracking was en-
abled under certain conditions violating invariants considered crucial to CDCL.
In CDCL with non-chronological backtracking the current variable assignment is
represented by the trail which is a sequence of literals. The trail is partitioned into
subsequences of literals between decisions identified by a decision level which
is assigned to the literals contained in them. One of the violated invariants says
that the literals on the trail are ordered in ascending order with respect to their
decision level.

This is not the case in [149] anymore. Assume the formula under considera-
tion evaluates to false under the current assignment. A clause is learned which is
used to determine the jump level, i.e., the decision level to which the solver back-
jumps. Let ` be the literal of the learned clause propagated after backjumping. It
is assigned to the jump level which, after backtracking chronologically to the back-
track level, might be lower than the decision level of another literal preceding ` on
the trail. In this case variable assignments at decision levels higher than the jump
level might conflict with the current assignment. This issue is dealt with by intro-
ducing a variant of backtracking in which no blocks of literals are unassigned but
only the literals with decision level greater than the backtrack level, which need
not be consecutive anymore.

To define more precisely the concepts introduced in [149], in [138] we provided
a formalization and formal proof and generalization of the procedure. Our goal
was to understand which invariants are crucial and which are redundant and to
empirically confirm the effectiveness of chronological backtracking. A second mo-
tivation, which is explored in depth in this paper, was the potential use of chrono-
logical backtracking for model counting, i.e., #SAT.

In [138], we characterized five invariants, three of which are violated by chrono-
logical backtracking. Still the procedure remains correct and we proved empiri-
cally that always executing chronological backtracking in combination with CDCL
does not degrade significantly solver performance confirming the suitability of
chronological backtracking for model counting.

Exact propositional model counting. The state of the art in exact propositional
model counting goes back to a paradigm presented in [15]. In this method the
formula under consideration is split into subformulae over disjoint sets of vari-
ables which are then solved independently and their results multiplied to yield
the model count of the formula. In this work the need for so-called good learn-
ing is identified. Several modern #SAT solvers implement this paradigm [172, 173,

16.2 preliminaries 117

189], a parallel version [37] as well as a distributed version [38] are available. An-
other method is based on knowledge compilation [59] in which the formula is
transformed into another language in which model counting can be executed effi-
ciently.

A totally different approach, inspired by [72, 93], was presented in [24, 137]. It
is dual, i.e., it takes as input a formula together with its negation. The basic idea is
based on the fact that a formula evaluates to > under a given variable assignment
if and only if its negation evaluates to ⊥ under the same assignment. This method
also enables the detection of partial models.

Our contribution. In this work we extend our framework [138] to serve proposi-
tional model counting and provide a formal proof of its correctness. We present a
counting algorithm based on model enumeration. Basically, our procedure yields
a formula which is logically equivalent to the formula under consideration. The
generated formula is a disjunction of pairwise contradicting conjunctions of liter-
als, hence its model count can be determined in polynomial time.

While model enumeration and model counting are two different yet related
tasks, our method is based on the first one since it facilitates reasoning about
the method’s properties in the following manner. Our argument is based on the
concepts of pending search space, i.e., the variable assignments not yet tested, and
pending models, i.e., the models not yet found. Obviously the two concepts are
related, and the pending models are contained in the pending search space. In an
implementation therefore one might decide to sum up the number of the detected
models instead of recording them explicitly.

First, we extend the original calculus [138] by one rule, to capture the situation
where a model is found. Second, the states now include all the (partial) models
found at any point in time of the search. Compared to [137] this extension is not
dual. It also exclusively uses chronological backtracking which renders blocking
clauses superfluous. As a consequence, it does not need the concepts of flipping
nor discounting, as introduced in [137]. In [137] we also showed by an example
that combining dual reasoning and the use of blocking clauses might result in
models counted twice. We also provided another example in which combining
discounting and blocking clauses leads to the loss of models, i.e., a discounted
model m is not detected anymore due to a blocking clause. These issues do not
exist anymore in our new framework.

16.2 preliminaries

Let F be a propositional formula over the set of variables V. We call literal a vari-
able v ∈ V or its negation ¬v. The variable of a literal ` is obtained by V(`). We
denote with ` the complement of the literal `, i.e., ` = ¬`, supposing ¬¬` = `.

A clause is a disjunction of literals, and a cube is a conjunction of literals. A
formula in Conjunctive Normal Form (CNF) is a conjunction of clauses, whereas a
Disjoint Sum-of-Products (DSOP) formula is a disjunction of pairwise contradicting
cubes. We interpret CNF formulae as sets of clauses and DSOP formulae as sets
of cubes where convenient. By writing C ∈ F we refer to a clause or cube C in a
formula F. Analogously we write ` ∈ C if ` is a literal in a clause or cube C. The
empty CNF formula and the empty cube are represented by >, the empty DSOP
formula and the empty clause are denoted by ⊥.

A trail, written I = `1 . . . `n, is a sequence of literals with no duplicate variables
which may also be interpreted as the conjunction of its literals. By V(I) the vari-

118 on backtracking chronologically in model counting

τ

I
δ

0
1
0

1
2
1

2
3
0

3
4
2

4
5
1

τ

I
δ

0
1
0

1
2
1

2
3
0

3
5
1

τ

I
δ

0
1
0

1
3
0

Figure 16.1: In the trail I on the left, from the three trails shown, literals 3 and 5 are placed
out of order. In fact, their decision level δ is lower than the decision level of a
literal preceding them on the trail, i.e., with lower position τ. The trails in the
middle and on the right show the results of backtracking to decision levels 1
and 0. When backtracking to the backtrack level b, only literals ` with δ(`) > b
are removed from the trail, while the assignment order is preserved.

ables of the literals on the trail I are obtained. We denote the empty trail by ε.
Trails may be concatenated, I = JK, provided V(J) ∩ V(K) = ∅. We write J 6 I
if J is a subsequence of I and J < I if furthermore J 6= I. The position of literal `
on the trail I is denoted by τ(I, `). We may interpret I as a set of literals and write
` ∈ I to refer to the literal ` on I. Similarly to [137], the decision literals on the trail
are marked by a superscript, e.g., `d denoting open “left” branches in the sense
of DPLL. Flipping the value of a decision can be seen as closing the corresponding
left branch and starting the “right” branch. Thus its decision literal `d becomes a
flipped literal `.

The decision level function δ : V 7→ N ∪ {∞} returns the decision level of a vari-
able v ∈ V. We define δ(v) = ∞ if v is unassigned, and δ is updated whenever a
variable is assigned or unassigned. The extension to literals `, clauses C and trails I
is straightforward by defining δ(`) = δ(V(`)), δ(C) = max{δ(`) | ` ∈ C} for
C 6= ⊥ and δ(I) = max{δ(`) | ` ∈ I} for I 6= ε. We further define δ(⊥) = δ(ε) = 0.
We write δ[` 7→ d] to denote the updated function δ in which V(`) is assigned
to decision level d. Similarly, by δ[I 7→ ∞] all literals on the trail I are unas-
signed. We may write δ ≡ ∞ as a shortcut. The function δ is left-associative,
i.e., δ[I 7→ ∞][` 7→ e] first unassigns all literals on I and then assigns literal ` to
decision level e.

By δ(L) = {δ(`) | ` ∈ L} we denote the set containing the decision levels of
its elements. The set of decision literals on the trail I is denoted by decs(I) =

{` | `d ∈ I} and the set containing their complements by decs(I) = {` | ` ∈
decs(I)}. By I6n we refer to the subsequence of I containing only the literals ` ∈ I
where δ(`) 6 n. Analogously, the set decs(I) may be restricted to decision literals `
where δ(`) 6 d by writing decs6d(I) = decs(I6d). We call slice a subsequence of I
containing all literals in I having the same decision level, e.g., slice(I, n) = I=n.
Backtracking to decision level i now amounts to unassigning literals ` ∈ I with
decision level greater than i, i.e., where ` ∈ slice(I, j) for j > i.

We clarify these concepts by means of an example taken from [138]. Consider
the trail I on the left hand side of Figure 16.1 over variables {1, . . . , 5} (in DI-
MACS format) where τ represents the position of a literal on I and δ represents
its decision level. Literals 1 and 3 were propagated at decision level zero, literal 5
was propagated at decision level one. The literals 3 and 5 are out-of-order literals,
i.e., their decision level is smaller than the one of a literal preceding them: We
have δ(2) = 1 > 0 = δ(3), whereas τ(I, 2) = 1 < 2 = τ(I, 3). In a similar man-
ner, δ(4) = 2 > 1 = δ(5), and τ(I, 4) = 3 < 4 = τ(I, 5). Moreover, I61 = 1 2 3 5,
decs(I) = {2, 4}, decs61(I) = {2}, slice(I, 1) = 2 5. Upon backtracking to decision
level one, the literals in slice(I, 2) are unassigned. The resulting trail is visualized

16.3 counting via enumeration with chronological cdcl 119

in the middle of Figure 16.1. Note that since the assignment order is preserved,
the trail still contains one out-of-order literal, namely 3. Backtracking to decision
level zero unassigns all literals in slice(I, 2) and slice(I, 1) resulting in the trail in
which all literals are placed in order, i.e., they are ordered in ascending order with
respect to their decision level, depicted on the right hand side.

A total assignment is a mapping from the set of variables V to the truth values 0
and 1. The trail I may also be interpreted as a partial assignment where I(`) = 1 iff
` ∈ I and I(`) = 0 iff ¬` ∈ I. Thus, I(`) is undefined if V(`) 6∈ V(I). Analogously,
I(C) and I(F) are defined. We denote with V − I = V \ V(I) ⊆ V the set of
variables in V and not in I. By 2|V−I| we denote the number of total assignments
covered by the partial assignment represented by I.

The residual of a formula F under the trail I is referred to by F|I . It is obtained
by replacing the literals ` ∈ I in F by > and their negation with ⊥. Analogously,
C|I for a clause C is defined. As an example, let F = (a ∨ b) ∧ (b ∨ c) be a formula
and I = a b the current trail. Then the residual of F under I is given by F|I = (c).

We say that the trail I satisfies a formula F, denoted by I |= F, if I(F) ≡ >, i.e.,
F|I = >. Then I is called a model of F. The model count of F, denoted by #F, is
given by the number of total assignments satisfying F. If instead I(F) ≡ ⊥, i.e.,
I(C) ≡ ⊥ for a clause C ∈ F, we say that I falsifies F, call C the conflicting clause
and δ(C) the conflict level.

A unit clause is a clause {`} containing one single literal ` called unit literal. By
units(F) we refer to the set of unit literals in F. Similarly, units(F|I) is defined.
By writing ` ∈ units(F|I) we denote that the unit clause {`} is contained in the
residual of F under I.

16.3 counting via enumeration with chronological cdcl

Let F be a CNF formula over variables V. A DSOP representation M of F con-
sists of cubes representing pairwise disjoint sets of (partial) models of F. Obvi-
ously, M is not unique. The model count of M and hence of F equals the sum of
the model counts of the cubes in M:

M is a DSOP representation of F =⇒ #F = ∑
C∈M

2|V−C|

Let I be the current trail. We denote with O(I) the pending search space of I, i.e.,
the assignments consistent with the trail not yet tested. It is given by I and its
(open) right branches R(I). Obviously O(I) is not known, but it can be determined
from I. Let I be of the form I = I0`

d
1 I1 . . . `d

m Im. Then the pending search space
with respect to the trail I is given by

O(I) = `1 ∧ I<1 ∨ `2 ∧ I<2 ∨ `3 ∧ I<3 ∨ . . . ∨ `m ∧ I<m ∨ I6m

= I=0 ∧ (`1 ∨ I=1 ∧ (`2 ∨ I=2 ∧ (`3 ∨ I=3 ∧ (. . . ∨ I=m−1 ∧ (`m ∨ I=m) . . .))))

which, if multiplied out, obviously is a DSOP (since I=i contains `i). Its cubes
represent pairwise disjoint sets of total assignments. More generally, we define
the pending search space of a trail I as

O(I) = I ∨ R(I) where

R(I) =
∨

`∈decs(I)

R=δ(`)(I) and R=δ(`)(I) = ` ∧ I<δ(`) for ` ∈ decs(I)

120 on backtracking chronologically in model counting

a b c dd

d

e f g hd

h

i j kd

k

l m nd

n

o pd

p

q r s

right branch of dd

a b c dd

d

e f g hd

h

i j kd

k

l m nd

n

o s p
flip decision

Figure 16.2: Trail after backtracking chronologically in Back{True, False}. The trail itself
together with the dashed lines represents the pending search space, i.e., the
assignments not yet tested.

denotes the right branch of the decision ` at decision level δ(`). We also define
Rop n(I) = R(Iop n), where op ∈ {6,>,<,>,=}. Then the pending models of F, i.e.,
the models of F contained in O(I), are given by F ∧O(I). Assuming the models
of F already found are represented by M, then M ∨ (F ∧O(I)) ≡ F. The pending
search space O(I) and the found models M are both DSOPs as well as their dis-
junction M ∨O(I), assuming M ∧O(I) ≡ ⊥. The model count of F therefore is
given by

#F = # (F ∧O(I)) + ∑
C∈M

2|V−C|

Example 16.1. Let F be a formula and let the trail be I = abcddefghdijkdlmndopdqrs
with decisions decs(I) = {d, h, k, n, p} where δ(d) = 1, δ(h) = 2, δ(k) = 3, δ(n) = 4,
and δ(p) = 5. Let the further decision levels be δ(a) = δ(b) = δ(c) = δ(f) = 0, δ(e) =
δ(g) = δ(m) = 1, δ(i) = δ(j) = δ(l) = 2, δ(s) = 3, δ(o) = 4, and δ(q) = δ(r) = 5.
The slices are I=0 = abcf , I=1 = ddegm, I=2 = hdijl, I=3 = kds, I=4 = ndo, I=5 = pdqr.
We have

O(I) = I ∨
∨

`∈decs(I)

(` ∧ I<δ(`))

= I ∨ (d ∧ I<1) ∨ (h ∧ I<2) ∨ (k ∧ I<3) ∨ (n ∧ I<4) ∨ (p ∧ I<5)

visualized in Figure 16.2. The dashed lines below the decision literals denote the assign-
ments where the respective decision literal is flipped, i.e., together with I they form the
pending search space.

Now assume I(F) = >. We assume we backtrack chronologically and flip the last
decision literal p. We get J = abcddefghdijkdlmndosp = I<5 p as shown at the bottom
of Figure 16.2 and

O(J) = J ∨
∨

`∈decs(J)

(` ∧ I<δ(`))

= (d ∧ I<1) ∨ (h ∧ I<2) ∨ (k ∧ I<3) ∨ (n ∧ I<4) ∨ (p ∧ I<5)

where δ(p) = 4. Note that O(J) ∨ I = O(I).
We have O(I) = O(J) ∨ I. Thus F ∧O(I) = F ∧O(J) ∨ F ∧ I = F ∧O(J) ∨ I since

I |= F and the pending models of F with respect to J are exactly the pending models of F
with respect to I minus the models of F represented by I.

16.4 calculus 121

16.4 calculus

We describe our calculus as a state transition system where non-terminal states are
denoted by (F, I, M, δ) in which F is a CNF formula over variables V, I denotes
the current trail and M the DSOP containing the models found so far. Finally, δ de-
notes the decision level function. The initial state is given by (F, ε, ⊥, δ0) where F,
ε and ⊥ denote the original formula, the empty trail and the empty DSOP and
δ0 ≡ ∞. The terminal state is equal to M which is a DSOP representation of F. The
rules are listed in Figure 16.3. Next we provide explanations of the rules, and in
Section 16.5 we proof their correctness.
EndTrue / EndFalse. If the trail I satisfies F and there are no decision literals
left on I, it is added to M and the search terminates since the search space has
been traversed exhaustively. If the trail I falsifies F, there exists a clause C ∈ F
such that I falsifies C. If in addition the conflict level δ(C) is zero, the pending
search space is given by O(I) = I60. We have I60(F) = ⊥, i.e., there are no more
assignments to be tested, and the search terminates.
Unit. The trail I neither satisfies nor falsifies F and there exists a clause C ∈ F that
becomes a unit clause {`} under I. The trail I is extended by ` which is assigned
to decision level δ(C \ {`}).
BackTrue. The trail I is a model of F and is added to M. We define D as the
clause consisting of all negated decision literals on I. There exist subsequences P
and Q of I such that I = PQ and δ(P) = δ(I)− 1 = e and a literal ` ∈ D such that
D|P = {`}. We use D as a kind of “reason” and backtrack chronologically to deci-
sion level e. This involves unassigning all literals with decision level greater than e.
For instance, ` ∈ decs(I) and δ(`) = e + 1 and upon backtracking ` is unassigned.
After backtracking we propagate ` and assign it decision level δ(D \ {`}) = e
resulting in the trail PK` where δ(PK`) = e.
BackFalse. There exists a clause C ∈ F such that C|I = ⊥. The conflict level is
δ(C) > 0, i.e., there is a decision left on I. We can determine (usually by way
of conflict analysis1 or just using the negated decisions) a clause D for which
F ∧M |= D such that δ(D) = c > 0 and whose residual is unit, e.g., {`}, at jump
level j = δ(D \ {`}) < c. In fact, upon backtracking to any decision level b where
j 6 b < c the residual of D under the trail becomes unit. This holds in particular
for b = c − 1. There exist subsequences P and Q of I such that I = PQ and
δ(P) = b and a literal ` ∈ D such that D|P = {`}. We backtrack to decision level b
using D as a reason. As for rule BackTrue, all literals with decision level greater
than b are unassigned after which ` is propagated obtaining the trail PK` where
δ(PK`) = b.
Decide. The trail I neither satisfies nor falsifies F and there are no unit liter-
als in F|I . An unassigned variable is chosen and assigned to decision level d =
δ(I) + 1.

Example 16.2. We now explain our calculus by a small example, precisely, the one for
which our calculus in [137] would fail if incorrectly blocking clauses and dual reasoning
were combined.

Let our formula be F = (1 ∨ 2) ∧ (1 ∨ 2) over variables V = {1, 2, 3} similar
to DIMACS. The execution trace is shown in Figure 16.4. The procedure starts with the

1 In contrast to [138] we require ` to be the negation of the last decision which corresponds to
learning the decision clause instead of the more common first UIP clause. Lifting this restriction is
part of future work.

122 on backtracking chronologically in model counting

EndTrue: (F, I, M, δ) ;EndTrue M ∨ I if F|I = > and decs(I) = ∅

EndFalse: (F, I, M, δ) ;EndFalse M if exists C ∈ F and C|I = ⊥ and

δ(C) = 0

Unit: (F, I, M, δ) ;Unit (F, I`, M, δ[` 7→ a]) if F|I 6= > and

⊥ 6∈ F|I and exists C ∈ F with {`} = C|I and a = δ(C \ {`})

BackTrue: (F, I, M, δ) ;BackTrue (F, PK`, M ∨ I, δ[L 7→ ∞][` 7→ e]) if

F|I = > and PQ = I and D = decs(I) and

e + 1 = δ(D) = δ(I) and ` ∈ D and e = δ(D \ {`}) = δ(P) and

K = Q6e and L = Q>e

BackFalse: (F, I, M, δ) ;BackFalse (F, PK`, M, δ[L 7→ ∞][` 7→ j]) if

exists C ∈ F and exists D with PQ = I and C|I = ⊥ and

c = δ(C) = δ(D) > 0 such that ` ∈ D and ` ∈ decs(I) and

`|Q = ⊥ and F ∧M |= D and j = δ(D \ {`}) and

b = δ(P) = c− 1 and K = Q6b and L = Q>b

Decide: (F, I, M, δ) ;Decide (F, I`d, M, δ[` 7→ d]) if F|I 6= > and

⊥ 6∈ F|I and units(F|I) = ∅ and V(`) ∈ V and δ(`) = ∞ and

d = δ(I) + 1

Figure 16.3: Rules for propositional model enumeration with chronological backtracking.
The formula F takes variables in V. If I satisfies F and there is no decision at
conflict level left, the search terminates (rule EndTrue). Otherwise the last de-
cision literal is flipped (BackTrue). In case of a conflict at conflict level zero the
search terminates (EndFalse). If I falsifies F at conflict level c > 0, a clause D is
learned. The solver backtracks chronologically to decision level c− 1 where D
becomes unit and propagates its unit literal (BackFalse). If the residual of F
under I is undefined, either unit propagation is applied (Unit) or a decision
taken (Decide).

16.4 calculus 123

Step Rule I δ(1) δ(2) δ(3) F|I M

0 ε ∞ ∞ ∞ (1∨ 2) ∧ (1∨ 2) ⊥
1 Decide 3d ∞ ∞ 1 (1∨ 2) ∧ (1∨ 2) ⊥
2 Decide 3d 2d ∞ 2 1 > ⊥
3 BackTrue 3d 2 ∞ 1 1 (1) ∧ (1) 3 2

4 Unit 3d 2 1 1 1 1 ⊥ 3 2

5 BackFalse 3 ∞ ∞ 0 (1∨ 2) ∧ (1∨ 2) 3 2

6 Decide 3 1d 1 ∞ 0 (2) 3 2

7 Unit 3 1d2 1 1 0 > 3 2

8 BackTrue 3 1 0 ∞ 0 (2) 3 2∨ 3 1 2

9 Unit 3 1 2 0 0 0 > 3 2∨ 3 1 2

10 EndTrue 3 2∨ 3 1 2∨ 3 1 2

Figure 16.4: Execution trace for Example 16.2

empty trail and M = ⊥ and by assigning all variables in V to decision level ∞ (step 0).
Then, literal 3 is decided and assigned to decision level d = 1 (step 1). After literal 2
is decided and assigned to decision level d = 2, the model 3 2 is found (step 2). Now
rule BackTrue is executed with D = (3 ∨ 2) and e = 1. We backtrack chronologically
by unassigning literal 2 and then propagate its complement 2 by assigning it to decision
level 1. The found model is recorded and M = 3 2 (step 3). The unit literal 1 is propagated
at decision level a = 1 due to the reason clause (1∨ 2) resulting in a conflict (step 4). The
conflicting clause is C = (1 ∨ 2) and the conflict level is c = 1. Conflict analysis yields
the clause (3) and the jump level j = 0. We backtrack to decision level b = 0 by unas-
signing literals 1, 2 and 3 and propagate 3 by assigning it to decision level j = 0 (step 5),
after which literal 1 is decided and assigned to decision level d = 1 (step 6). Due to the
reason clause C = (1 ∨ 2) with decision level a = 1, literal 2 is propagated by assigning
it to decision level 1 and model 3 1 2 is found (step 7). Rule BackTrue is executed with
D = (1) and e = 0. We backtrack chronologically by unassigning literals 2 and 1 and
propagating literal 1 assigning it to decision level 0 (step 8). Literal 2 is propagated, the
reason clause is (1∨ 2) at decision level a = 0, and model 3 1 2 is found (step 9). There are
no decisions left on I, and the model found in step 9 is added to M. The search terminates
with M = 3 2∨ 3 1 2∨ 3 1 2 (step 10).

The choice of the decision literal is non-deterministic and might have a significant impact
on the trace length as we are going to show. Assume in step 1 we decide literal 2 assigning
it decision level 1. We immediately find model 2 and apply rule BackTrue with D = (2)
and e = 0, i.e., we flip the last decision literal 2 by unassigning it and assigning its
complement to decision level 0. The residual of F under the trail is (1) ∧ (1), hence we
apply rule Unit with C = (1 ∨ 2) and propagate literal 1 at decision level a = 0. We get
a conflict with C = (1 ∨ 2) at decision level 0 and our procedure terminates with M = 2
after only four steps. If we start by deciding 2 instead, in the next step we might propagate
literal 1 which leads to a conflict as in the last example. Rule BackFalse yields D = (2)
with j = b = 0 and after applying rule Unit and propagating literal 2 at decision level 0,
we find model 2. Since the trail contains no decision literal, the procedure terminates
by means of rule EndTrue in state M = 2 after four steps as well. Now let us decide

124 on backtracking chronologically in model counting

(1) ∀k, ` ∈ decs(I) . τ(I, k) < τ(I, `) =⇒ δ(k) < δ(`)

(2) δ(decs(I)) = {1, . . . , δ(I)}

(3) ∀n ∈N . F ∧M ∧ decs6n(I) |= I6n

(4) M ∨O(I) is a DSOP

(5) M ∨ F ∧O(I) ≡ F

Figure 16.5: Invariants for propositional model counting with conflict-driven clause learn-
ing and chronological backtracking.

literal 1 first. Then I = 1d and F|I = (2), literal 2 is propagated due to reason (1 ∨ 2) at
decision level 1 and model 1 2 is found. By means of rule BackTrue backtracking occurs
to decision level 0 and the decision literal 1 is flipped. We now have I = 1 and F|I = (2).
Again, literal 2 is propagated resulting in I = 1 2 which satisfies F. The trail contains
no decision literals, and rule EndTrue is applied. Hence, after five steps the procedure
terminates in state M = 1 2∨ 1 2. If the first decision is 1, analogously the following steps
are executed: propagation of literal 2 finding the model 1 2 (Unit), backtracking and flipping
decision 1 (BackTrue), propagating literal 2 (Unit), finding model 1 2 and terminating
with M = 1 2∨ 1 2 (EndTrue). In total, five steps are required.

We conclude this example by remarking that the trail is shortest if first literals are
decided which occur either positively or negatively in all models. The worst case with
respect to trail length is if literals are decided first whose variable does not appear in the
formula at all. This effect is due to the nature of chronological backtracking.

16.5 proofs

For proving the correctness of our method, we make use of the invariants listed
in Figure 16.5 the first two of which were introduced in [138], while the third one
is Invariant (3) in [138] strengthened by the negation of M. This strengthening is
required to show that after backtracking upon finding a model (rule BackTrue) the
propagated literals are indeed implied. Their “reason” is the clause D consisting
of the negated literals of the model just found. In contrast to rule BackFalse, D is
not implied by the formula F but subsumed by the negation of a cube in its DSOP
representation M instead, namely the model just found.

Invariants (4) and (5) represent statements concerning the pending search space
needed to show that in the end state M is logically equivalent to the formula and
thus their model counts coincide. Invariant (4) states that M is DSOP, hence, its
model count equals the sum of the number of models of its cubes. Invariant (5)
says that all models of F are represented by the formula obtained by the disjunc-
tion of M and the pending models of F. Thus, upon termination of the procedure
the second disjunct is empty, i.e., M contains all models of F.

16.5.1 Invariants in Non-Terminal States

Lemma 16.1. Invariants (1) – (5) hold in non-terminal states.

16.5 proofs 125

The proof is carried out by induction over the number of rule applications. As-
suming that Invariant (1) – (5) hold in a non-terminal state (F, I, M, δ), we show
that they are met after the transition to another non-terminal state for all rules.

Unit
Invariants (1) and (2): Except for the DSOP M contained in the state, rule Unit
matches the one in [138], hence Invariants (1) and (2) are met.

Invariant (3): The argument is the same as for Invariant (3) in [138] replacing F
by F ∧ M where M remains unaltered, hence Invariant (3) also holds after the
application of rule Unit.
Invariant (4): We have that M ∨O(I) is a DSOP and we need to show that M ∨
O(I`) is a DSOP as well. According to its definition, O(I`) is a DSOP. We have
O(I`) = I` ∨ R(I`) = I` ∨ R6a(I`) ∨ R>a(I`). Since δ(`) = a and ` 6∈ decs(I`),i `
does not occur in R6a(I`), hence O(I`) = I`∨ R6a(I)∨ R>a(I)∧ `. Since M∨O(I)
is a DSOP, M ∨O(I`) is a DSOP as well.

Invariant (5): Since F ∧ I |= `, we have F ∧O(I) ≡ F ∧O(I`). From this we get
M ∨ F ∧O(I) ≡ M ∨ F ∧O(I`) ≡ F, and Invariant (5) holds after executing Unit.

BackTrue
Invariants (1) and (2): We need to prove that the order of the decisions left on the
trail remains unaltered and no new decisions are taken. We show that (A) K con-
tains no decision literal and (B) in the post state ` is not a decision literal either.

(A) We have I = PQ and K = Q6e, i.e., K is obtained from Q by removing all
literals with decision level greater than e. Furthermore, for all k ∈ K, p ∈ P, we
have τ(PK, p) < τ(PK, k) and δ(K) 6 δ(P) = e. By the definition of decision literal
and since Invariant (1) holds before applying BackTrue, the decision literal with
decision level e is contained in P. Since K contains no literal with decision level
greater than e, K contains no decision literal.

(B) It is sufficient to consider the case where δ(I) > 0. We have δ(D \ {`}) =
e = δ(P) and δ(D) = e + 1. According to Invariants (1) and (2) there exists exactly
one decision literal for each decision level, and since D = decs(I) and ` ∈ D,
` ∈ decs(I). Furthermore, ` ∈ Q, hence ` is unassigned upon backtracking, i.e.,
{`, `} 6∈ PK, and D|PK = {`}. Due to the definition of D there exists a literal
k ∈ D where k 6= ` such that δ(k) = δ(`) = e for which τ(PK, k) < τ(PK, `). Due
to Invariant (1) and the definition of decision literal, ` is not a decision literal. The
order of the decision literals left on the trail is not affected, hence Invariant (1)
holds. Also, the remaining decisions remain unaltered, and Invariant (2) holds as
well.

Invariant (3): We need to show F ∧ (M ∨ I) ∧ decs6n(PK`) |= (PK`)6n for all n.
First note that the decision levels of all the literals in PK do not change while
applying the rule. Only the decision level of the variable of ` is decremented from
e + 1 to e. It also stops being a decision variable. Since δ(PK`) = e, we can assume
n 6 e. Observe F ∧ (M ∨ I) ∧ decs6n(PK`) ≡ I ∧ (F ∧ M ∧ decs6n(I)) since ` is
not a decision in PK` and I6e = PK and thus I6n = (PK)6n by definition. Now
the induction hypothesis is applied and we get F ∧ (M ∨ I) ∧ decs6n(PK`) |= I6n.
Again using I6n = (PK)6n this almost closes the proof except that we are left
to prove F ∧ (M ∨ I) ∧ decs6e(PK`) |= ` as ` has decision level e in PK` after
applying the rule and thus ` disappears in the proof obligation for n < e. To see
this note that F ∧ D |= I using again the induction hypothesis for n = e + 1. This

126 on backtracking chronologically in model counting

gives F ∧ decs6e(PK) ∧ ` |= I and thus F ∧ decs6e(PK) ∧ I |= ` by conditional
contraposition.

Invariant (4): We assume M ∨O(I) is a DSOP and need to show that (M ∨ I) ∨
O(PK`) is a DSOP as well. Now O(I) = I ∨ R6e+1(I) since δ(I) = e + 1. Fur-
ther, O(I) = I ∨ R6e(I) ∨ R=e+1(I). The pending search space of PK` is equal to
O(PK`) = PK` ∨ R6e(PK`). But PK = I6e and PK` = I6e` = R=e+1(I) since
` ∈ decs(I) and δ(`) = e + 1. In addition, R6e(PK`) = R6e(PK) since ` 6∈
decs(PK`) and δ(`) = e which gives us R6e(PK`) = R6e(I). We have O(PK`) =
R=e+1(I) ∨ R6e(I). From this we get O(PK`) ∨ I = O(I) and (M ∨ I) ∨O(PK`) =
M ∨ (I ∨O(PK`)) = M ∨O(I) which is a DSOP, and Invariant (4) holds.

Invariant (5): Given M ∨ (F ∧O(I)) ≡ F, we need to show that (M ∨ I) ∨ (F ∧
O(PK`)) ≡ F. From O(PK`)∨ I = O(I) we get M∨ F∧O(I) = M∨ F∧ (O(PK`)∨
I) = M ∨ (F ∧O(PK`)) ∨ (F ∧ I). But I |= F and F ∧ I ≡ I. Therefore M ∨ F ∧
O(I) = M ∨ (F ∧O(PK`)) ∨ I = (M ∨ I) ∨ F ∧O(PK`) ≡ F, and Invariant (5) is
met.

BackFalse
Invariants (1) and (2): Except for the DSOP M added to the state, the fact that
clause D is not added to F and that F ∧ M |= D, rule BackFalse corresponds to
rule Jump in [138] where b = c− 1. Therefore, rule BackFalse is a special case of
rule Jump and Invariants (1) – (2) still hold after the execution of rule BackFalse.

Invariant (3): Let n be arbitrarily fixed. Before executing BackFalse, F ∧ M ∧
decs6n(I) |= I6n. We need to show that F∧M∧ decs6n(PK`) |= (PK`)6n. We have
I = PQ and PK < I, i.e., F ∧ M ∧ decs6n(PK) |= (PK)6n. From j = δ(D \ {`}),
c = δ(D) and δ(P) = c − 1 we get D|PK = {`}. On the one hand F ∧ M ∧
decs6n(PK) |= D \ {`} and on the other hand F ∧ M ∧ decs6n(PK) |= D, there-
fore, by modus ponens, F ∧ M ∧ decs6n(PK) |= `. Since ` is not a decision lit-
eral, as shown above, F ∧M ∧ decs6n(PK) ≡ F ∧M ∧ decs6n(PK`) and F ∧M ∧
decs6n(PK`) |= (PK`)6n. So, Invariant (3) holds after applying rule BackFalse.

Invariant (4): Given that M ∨O(I) is a DSOP, we need to show that M ∨O(PK`)
is a DSOP as well. As shown for rule BackTrue, O(PK`) ∨ I = O(I) if ` ∈ decs(I).
Due to the premise, we have M∧O(I) ≡ ⊥. Therefore, M∧O(I) = M∧ (O(PK`)∨
I) ≡ (M ∧O(PK`)) ∨ (M ∧ I) ≡ ⊥, in particular M ∧O(PK`) ≡ ⊥, and Invari-
ant (4) holds.

Invariant (5): Given that M ∨ (F ∧O(I)) ≡ F, we need to show that M ∨ (F ∧
O(PK`)) ≡ F as well. Analogously to rule BackTrue we have M∨ F ∧O(I) = M∨
(F∧O(PK`))∨ (F∧ I). But F∧ I ≡ ⊥, hence M∨ F∧O(I) = M∨ F∧O(PK`) ≡ F,
and Invariant (5) is met.

Decide
Invariants (1) and (2): Except for the DSOP M contained in the state, rule De-
cide matches exactly the one in [138], and, following the argument given there,
Invariants (1) – (2) are met.

Invariant (3): Let n be arbitrarily fixed. Note that literal ` is a decision literal.
Therefore F∧M∧ decs6n(I`) ≡ F∧M∧ decs6n(I)∧ ` |= I6n(I)∧ ` ≡ (I`)6n, and
Invariant (3) holds.

Invariant (4): Assuming M ∨O(I) is a DSOP, we need to show that M ∨O(I`)
with decision literal ` is a DSOP as well. We have O(I`) = O6d(I`) where d =
δ(I) + 1 since ` ∈ decs(I`) and δ(`) = d. Further, O(I`) = I` ∨ R6d(I`) = I` ∨

16.5 proofs 127

R6d−1(I`) ∨ R=d(I`) = I` ∨ R6d−1(I`) ∨ ` ∧ I6d−1 where δ(I) = d− 1. Observing
that ` 6∈ (I`)=i for i < d, i.e., (I`)6i = I6i for i 6 d− 1 = δ(I), we get O(I`) = I`∨
R(I)∨ `I = I(`∨ `)∨R(I) = I∨R(I) = O(I). This gives us M∨O(I`) = M∨O(I)
which due to our premise is a DSOP, and Invariant (4) holds.

Invariant (5): As just shown, O(I`) ≡ O(I). Therefore, M ∨ F ∧O(I`) ≡ M ∨ F ∧
O(I) ≡ F, and after executing rule Decide Invariant (5) still holds.

16.5.2 Equivalence and Model Count

Proposition 16.1. If Enumerate reaches a terminal state M, then M ≡ F and the
model count of F is given by #F = ∑C∈M 2|V−C|.

Due to Invariants (4) and (5), in every non-terminal state M is a DSOP of models
of F, but we still need to show that the resulting I ∨ M in EndTrue and M in
EndFalse are equivalent to F.

EndTrue. Prior to applying rule EndTrue, M ∨ O(I) is a DSOP and M ∨ F ∧
O(I) ≡ F. Since decs(I) = ∅, we have R(I) = ⊥ and O(I) = I, i.e., M ∨ I is a
DSOP as well. Since I |= F, we have F∧ I ≡ I and M∨ (F∧O(I)) ≡ M∨ (F∧ I) ≡
M ∨ I ≡ F due to the premise.

EndFalse. For showing that M∨ F∧O(I) ≡ F we observe that R(I) = R6δ(C)(I) =
⊥. We therefore have O(I) = I ∨ R(I) = I ∨⊥ = I. Furthermore, I falsifies F, i.e.,
F ∧ I ≡ ⊥. This gives us M ∨ F ∧O(I) ≡ M ∨ F ∧ I ≡ M ≡ F due to the premise.

16.5.3 Progress

Proposition 16.2. Enumerate always makes progress, i.e., in every non-terminal state
a rule is applicable.

The proof is conducted by induction over the number of rule applications. We
show that in any non-terminal state (F, I, M, δ) a rule can be executed.

Assume F|I = >. If decs(I) = ∅, rule EndTrue can be applied. Otherwise we
choose D = decs(I). We have δ(D) = δ(I) = e + 1 and due to Invariant (2) D
contains exactly one decision literal ` such that δ(`) = e + 1 and therefore δ(D) \
{`}) = e. We choose P and Q such that I = PQ and e = δ(P) and in particular
`|Q = ⊥. After backtracking to decision level e, we have I6e = PK where K = Q6e
and D|PK = {`}. All preconditions of rule BackTrue are met.

If instead F|I = ⊥, there exists a clause C ∈ F such that C|I = ⊥. If δ(C) = 0, rule
EndFalse is applicable. Otherwise, by Invariant (3) we have F ∧M ∧ decs6c(I) ≡
F ∧M ∧ decs6c(I) ∧ I6c |= I6c. Since I6c(F) ≡ ⊥, also F ∧M ∧ decs6c(I) ∧ I6c ≡
F ∧M ∧ decs6c(I) ≡ ⊥. We choose D = decs(I) obtaining F ∧M ∧ D ∧ I6c ≡ ⊥,
thus F∧M |= D. Similarly to the proof of progress given in Prop. 2 in [138], but for
b = c− 1, it can be shown that all preconditions of rule BackFalse hold. Note that
we do not explicitly add D to F since in CDCL with chronological backtracking
we need no blocking clauses. We use D exclusively to determine ` instead.

The proof for the case where F|I 6∈ {>,⊥} is identical to the one for Prop. 2

in [138], since apart from M in non-terminal states rules Unit and Decide are equal
in both frameworks.

Since all possible cases are covered by this argument, in every non-terminal state
a rule is applicable, i.e., Enumerate always makes progress.

128 on backtracking chronologically in model counting

16.5.4 Termination

Proposition 16.3. Enumerate always terminates, i.e., no infinite state sequence is gen-
erated.

The proof is analogous to the one in [138] with rule BackFalse replacing Jump
and the additional rule BackTrue to which the observations concerning BackFalse
apply as well.

16.6 conclusion

The results for combining chronological backtracking with CDCL presented
in [149] and its potential for propositional model counting conjectured in [138]
provided the main motivation for our work. We have presented a formal calculus
for propositional model counting based on these ideas and provided a formal
proof of its correctness.

For our framework we chose a model enumeration approach. The main moti-
vation therefore was the following. Let F be a formula and I the current trail. A
statement of an invariant taking into account the model count alone would be
something like MC + MO = MF where MC denotes the number of total mod-
els of F found so far, MO denotes the number of pending total models of F and
MF denotes the model count of F. But only one of the three quantities is known,
namely MC, whereas the newly introduced Invariants (4) and (5) allow first for
a precise characterization of both the found and pending models and second to
show that the union of the two yields the models of F.

The preconditions F|I 6= > and⊥ 6∈ F|I may be omitted in rules Unit and Decide
without compromising the procedure’s correctness. The most important remain-
ing open question is whether literal ` in rule BackFalse needs to be a flipped
decision.

We plan to implement our rules to experimentally validate their effectiveness
and to investigate possible applications in SMT and QBF. Our hope is to avoid
the overhead of introducing blocking clauses in order to make use of learning. We
want to extend the presented approach to projected model counting, also in com-
bination with dual reasoning [137]. We further target component-based reasoning.

17
D I S C U S S I O N O F PA P E R 4

The main contributions are pointed out, the choice of an enumeration approach
is motivated, and proof details not stated explicitly in the paper are given (Sec-
tion 17.1). The concept of pending search space is central in our framework but
does not occur explicitly in our rules. In Section 17.2, we show its evolution during
the execution of our calculus by means of an example and identify a weak spot in
its definition and in our rules: its definition in the initial state is not clear, and in
the paper, we state that, for a formula F and a trail I over variables of F, upon ter-
mination it holds that F ∧O(I) is empty. However, none of EndTrue and EndFalse
alter I, hence F ∧O(I) = I in the former case, and our statement does not hold if
the computation terminates with a model. The proof of our calculus remains unaf-
fected. Nevertheless, we believe this should be fixed, and we are going to present
preliminary ideas in Section 17.3.

17.1 main contributions

Our goal was to devise a model counting approach based on chronological CDCL
by extending our former calculus [138] accordingly and to provide a formal proof
of its correctness. In place of the model count, our method computes a DSOP
representation of the input formula. However, it can readily be adapted to com-
pute the model count of the input formula by summing up the number of total
assignments represented by the detected (partial) models.

The enumeration approach facilitates the proof of correctness of our method: for
the formula F, a trail I over the variables of F, and a DSOP formula M consisting
of (partial) models of F, it holds anytime that M ∨ (F ∧O(I)) ≡ F, and therefore
also #(F∧O(I)) = #F. The new concept of pending search space, denoted by O(I),
describes the assignments not yet tested. The models still to be found are given
by F ∧O(I).

Our proof extends the proof of our former work Chapter 14. We introduce new
invariants involving the pending search space and the pending models. Invari-
ant (4) is crucial, since it is the one expressing that every total assignment is tested
at most once. In fact, every total assignment is tested exactly once, albeit its check
might occur implicitly, namely if it is a total extension of either a partial model
or a partial counter-model of F. In this case, backtracking occurs without assign-
ing all variables. The strengthening of Invariant (3) by ¬M is similar to the case
where blocking clauses are added to F: chronological backtracking ensures that ev-
ery total assignment is tested exactly once, and therefore the found models (and
counter-models) are “blocked” in the sense that they can not be found again. Con-
sequently, propagated literals are implied by F ∧ ¬M ∧ decs6n(I).

129

130 discussion of paper 4

Table 17.1: Execution trace for model counting using chronological CDCL.

s rule I F|I O(I) M CM

0 ε F 1 0 0

1 Decide ad (¬b) (¬a) ∨ (a) 0 0

2 Unit ad¬bC3 1
(¬a) ∨
(a ∧ ¬b)

0 (a ∧ b)

3 BackTrue ¬a
(¬b) ∧
(¬c)

(¬a) (a ∧ ¬b) (a ∧ b)

4 Unit ¬a¬bC1 (¬c) (¬a ∧ ¬b) (a ∧ ¬b)
(a ∧ b) ∨
(¬a ∧ b)

5 Unit ¬a¬bC1¬cC2 1 (¬a ∧ ¬b ∧ ¬c) (a ∧ ¬b)
(a ∧ b) ∨
(¬a ∧ b) ∨

(¬a∧¬b∧ c)

6 EndTrue ¬a¬bC1¬cC2 1 (¬a ∧ ¬b ∧ ¬c)
(a ∧ ¬b) ∨

(¬a∧¬b∧¬c)

(a ∧ b) ∨
(¬a ∧ b) ∨

(¬a∧¬b∧ c)

17.2 the pending search space by an example

Consider the propositional formula

F = (a ∨ ¬b)︸ ︷︷ ︸
C1

∧ (a ∨ ¬c)︸ ︷︷ ︸
C2

∧ (¬a ∨ ¬b)︸ ︷︷ ︸
C3

defined over the set of variables V = {a, b, c}. It has three models: a¬bc, a¬b¬c,
and ¬a¬b¬c. The calculus depicted in Figure 16.3 generates the execution trace
listed in Table 17.1. The second column denotes the rule which is applied. The
third and fourth column denote the resulting trail I and the residual of F under I.
The fifth and sixth column refer to the pending search space with respect to I
and the DSOP formula M consisting of the models of F, while CM is a DSOP
containing the counter-models of F as will be explained further down.
Step 0: Initially, the trail I is empty, and O(I) consists of the disjunction of all
possible assignments to the variables in V, which is equivalent to 1.
Step 1: The decision ad is taken, and I = ad. The pending search space is defined
as O(ad) = (a)∨ (¬a), i. e., it consists of I and the right branch of the decision ad, as
defined in Section 16.3. Notably, O(ad) ≡ 1, i. e., the pending search space remains
the same: a decision splits the pending search space into two halves, namely one in
which the decision literal is assigned the value 1 and one in which it is assigned 0.
Step 2: The literal ¬b is propagated with reason C3, and I = ad¬bC3 is a model
of F. The pending search space is given by O(I) = (¬a) ∨ (a ∧ ¬b), which is not
logically equivalent to the pending search space in the former step. In fact, by
propagating ¬b, we rule out the assignment ab, which is a counter-model of F
and is shown in the last column entitled CM for “counter-models”, in which we
keep track of the assignments ruled out by executing unit propagation.
Step 3: Backtracking occurs, and the most recent decision literal is flipped. The
resulting trail is I = ¬a. It contains no decision literal, and hence O(I) = (¬a),

17.3 towards an alternative termination condition 131

which is exactly the pending search space of the previous step from which the
model m1 = a¬b just found has been removed.

Step 4: The literal ¬b is propagated with reason C1, and accordingly, the assign-
ment ¬ab is removed from the pending search space of the previous step and
added to MC, since it can not be extended to a model of F.

Step 5: Again, the Unit rule is executed, and the corresponding assignment ¬a¬bc
is added to MC. The trail I = ¬a¬bC1¬cC2 contains no decision, and the pending
search space is given by O(I) = (¬a ∧ ¬b ∧ ¬c).
Step 6: The computation terminates with the execution of rule EndTrue in state M.
The trail remains unaltered, and consequently the pending search space is not
empty, either, although the search space has been processed exhaustively.

17.3 towards an alternative termination condition

The pending search space consists of the assignments which are not yet tested. It
provides a means to describe the pending models without knowing them, as in
Invariant (5), and is an important ingredient in our proof. However, the example
in Section 17.2 revealed two issues concerning the pending search space.

First, by the definition introduced in Section 16.3, the pending search space of
an empty trail is given by O(ε) = 0. However, while in the initial state the trail
is empty, the whole search space still need be processed and the pending search
space should therefore be defined as O(I) = 1 in the initial state.

Second, one would expect the pending search space to be empty after termina-
tion, since the search space has been processed exhaustively. This is actually not
the case in our calculus, since neither rule EndTrue nor rule EndFalse alters I. The
computation therefore terminates with O(I) 6= 0, although all assignments have
been tested, and even with F ∧O(I) 6= 0 if I is a model of F, although all models
have been found and recorded. This is rather counter-intuitive. This issue can be
fixed by setting I = ε in rules EndTrue and EndFalse. This is correct: Let J denote
a trail. To meet the preconditions for a termination rule, the trail J contains only
propagated literals and is therefore the last assignment which need be tested. Ac-
cordingly, the pending search space is O(J) = J, and after executing a terminal
rule, the assignment represented by J need be “subtracted” from both the trail J
and the pending search space O(J). Obviously, both become empty.

In our framework, the computation terminates as soon as a terminal state is
reached, because no further rule is applicable. However, if the termination rules
alter the trail, it need be contained in the terminal state, too, which could be de-
fined as (M, I) or even (M, ε). This solution still ensures that no rule is applicable
to a terminal state, and no additional termination condition is required.

Things look differently if we want to represent both intermediate and terminal
states similarly, for instance according to the definition in our paper: Let an inter-
mediate state be si = (F, M, I, δ), where I contains only propagated literals and
is a model of F. If we alter rule EndFalse as described above, after its execution we
reach the terminal state s f = (F, M, ε, δ0). But if M = 0, we can not distinguish s f
from the initial state s0 = (F, 0, ε, δ0), and the computation might start over again.
The problem consists in the definition of the trail: it is empty in both the initial
and the terminal states, and the decision level function is equal in those states, too.

However, the pending search state differs in the initial and terminal states. We
could therefore define intermediate states as si = (F, I, M, δ, O), where O = O(I).

132 discussion of paper 4

The initial state is then given by s0 = (F, ε, 0, δ0, 1). The terminal state would be
defined as s f = (F, ε, M, δ0, 0), and the termination condition would be O = 0.

Adding one element to the state representation for providing a termination cri-
terion might seem ugly. However, none of the other elements can be discarded.
Furthermore, considering the pending search space but not the processed search
space or the counter-models introduces some kind of asymmetry. This can be
remediated by extending the state representation further. First, observe that the
processed search space in a state (F, I, M, δ, O) is given by the disjunction of M
and CM, which denotes the counter-models found during computation, similarly
to the example in Section 17.2. Indeed, these are the only assignments which are
not explicitly checked, and therefore the processed search space can be described
as M ∨ CM. Intermediate states could then be defined as si = (F, I, M, δ, O, C)
with the initial and terminal states defined accordingly.

In both definitions, some redundancy is introduced by the addition of the pend-
ing search space O(I), since it can be computed from the trail I in every but the
initial state. Its usefulness is therefore rather limited. An option could be to re-
place it by a flag expressing whether we are in a terminal (or initial) state or not.
This addition is useful for the proofs but not necessary in an implementation.

In this part, we worked on combining DPLL for #SAT with backjumping but
we did not focus on finding short models, which improves the search behav-
ior (Part iii). In the next part, we focus on approaches to shorten models beyond
the dual approach.

Part V

PA RT I A L M O D E L E N U M E R AT I O N

18
PA P E R 5 : F O U R F L AV O R S O F E N TA I L M E N T

published. In: Theory and Applications of Satisfiability Testing – SAT 2020 – 23rd
International Conference, Alghero, Italy, July 3–10, 2020, Proceedings. Ed. by Luca Pu-
lina and Martina Seidl. Vol. 12178. Lecture Notes in Computer Science. Springer,
2020, pp. 62–71. doi: 10.1007/978-3-030-51825-7_5.

authors . Sibylle Möhle, Roberto Sebastiani and Armin Biere.

acknowledgments . The work was supported by the LIT Secure and Correct
Systems Lab funded by the State of Upper Austria, by the QuaSI project funded
by D-Wave Systems Inc., and by the Italian Assocation for Artificial Intelligence
(AI*IA). We thank the anonymous reviewers and Mathias Fleury for suggesting
many textual improvements.

abstract. We present a novel approach for enumerating partial models of a
propositional formula, inspired by how theory solvers and the SAT solver interact
in lazy SMT. Using various forms of dual reasoning allows our CDCL-based algo-
rithm to enumerate partial models with no need for exploring and shrinking full
models. Our focus is on model enumeration without repetition, with potential ap-
plications in weighted model counting and weighted model integration for prob-
abilistic inference over Boolean and hybrid domains. Chronological backtracking
renders the use of blocking clauses obsolete. We provide a formalization and ex-
amples. We further discuss important design choices for a future implementation
related to the strength of dual reasoning, including unit propagation, using SAT
or QBF oracles.

18.1 introduction

Model enumeration is a key task in various activities, such as lazy Satisfiability
Modulo Theories [176], predicate abstraction [118], software product line engineer-
ing [80], model checking [21, 131, 184], and preimage computation [119, 180].

Whereas in some applications enumerating models multiple times causes no
harm, in others avoiding repetitions is crucial. Examples are weighted model
counting (WMC) for probabilistic reasoning in Boolean domains and weighted
model integration (WMI), which generalizes WMC for hybrid domains [142, 143].
There, the addends are partial satisfying assignments, i.e., some variables remain
unassigned. Each of these assignments represents a set of total assignments, and
consequently, the number of the addends is reduced. A formula might be repre-
sented in a concise manner by the disjunction of its pairwise contradicting partial

135

https://doi.org/10.1007/978-3-030-51825-7_5

136 paper 5 : four flavors of entailment

models, which is of interest in digital circuit synthesis [17]. Partial models are rel-
evant also in predicate abstraction [118], preimage computation [119, 180], and ex-
istential quantification [32]. They can be obtained by shrinking total models [190].
Alternatively, dual reasoning, where the formula is considered together with its
negation, allows for pruning the search space early and detecting partial models.
It is also applied in the context of model counting [24, 137].

If only a subset X of the variables is significant, the models are projected onto
these relevant variables. We say that we existentially quantify the formula over the
irrelevant variables Y and write ∃Y [F(X, Y)], where F(X, Y) is a formula over
variables X and Y such that X ∩ Y = ∅. Projected model enumeration occurs in
automotive configuration [203], existential quantifier elimination [32], image com-
putation [94, 95], predicate abstraction [118], and bounded model checking [184].

To avoid finding models multiple times, blocking clauses might be added to the
formula under consideration [104, 131]. This method suffers from a potentially
exponential blowup of the formula and consequent slowdown of unit propagation.
Toda and Soh [191] address this issue by a variant of conflict analysis, which is
motivated by Gebser et al. [83] and is exempt from blocking clauses. Chronological
backtracking in Grumberg et al. [94] and our previous work [139] ensures that the
search space is traversed in a systematic manner, similarly to DPLL [60], and the
use of blocking clauses is avoided. Whenever a model is found, the last (relevant)
decision literal is flipped. No clause asserting this flipped decision is added, which
might cause problems during later conflict analysis. This problem is addressed by
modifying the implication graph [94] or by an alternative first UIP scheme [191].

Our contribution. We lift the way how theory and SAT solver interact in SMT to
propositional projected model enumeration without repetition. Based on the no-
tion of logical entailment, combined with dual reasoning, our algorithm detects
partial models in a forward manner, rendering model shrinking superfluous. The
test for entailment is crucial in our algorithm. Anticipating a future implementa-
tion, we present it in four flavors with different strengths together with examples.
The main enumeration engine uses chronological CDCL [149], is exempt from
blocking clauses, and thus does not suffer from a formula blowup. Its projection
capabilities make it suitable also for applications requiring model enumeration
with projection. We conclude our presentation by a formalization of our algorithm
and a discussion of the presented approach. Our work is motivated by projected
model counting and weighted model integration. We therefore focus on (projected)
model enumeration without repetition. Contrarily to Oztok and Darwiche [161],
we use an oracle and build a Disjoint Sum-of-Products (DSOP) [17]. The work by
Lagniez and Marquis [116] is orthogonal to ours. It is led by a disjunctive decom-
position of the formula under consideration after a full model is found and also
decomposes it into disjoint connected components.

18.2 preliminaries

A literal ` is a variable v or its negation ¬v. We denote by V(`) the variable of `
and extend this notation to sets and sequences of literals. We write ` for the com-
plement of `, i.e., ` = ¬`, defining ¬¬` = `. A formula in conjunctive normal
form (CNF) over variables V is defined as a conjunction of clauses, which are dis-
junctions of literals with variable in V, whereas a formula in disjunctive normal
form (DNF) is a disjunction of cubes, which are conjunctions of literals. We might
interpret formulae, clauses, and cubes also as sets of clauses or cubes, and literals

18.3 early pruning for projected model enumeration 137

and write C ∈ F for referring to a clause or cube C in a formula F and ` ∈ C
where ` is a literal in C. The empty CNF formula and the empty cube are denoted
by 1, the empty DNF formula and the empty clause by 0.

A total assignment is a mapping from the set of variables V to the truth values 1
(true) and 0 (false). A trail I = `1 . . . `n is a non-contradictory sequence of literals,
which might also be interpreted as a (possibly partial) assignment, where I(`) = 1
if ` ∈ I and I(`) = 0 if ¬` ∈ I. We denote the empty trail by ε and the set of
variables of the literals on I by V(I). Trails and literals might be concatenated,
written I = JK and I = J`, provided V(J) ∩V(K) = ∅ and V(J) ∩V(`) = ∅. We
interpret I also as a set of literals and write ` ∈ I to denote a literal ` on I. The
residual of a formula F under a trail I, written F|I , is obtained by replacing the
literals ` in F, where V(`) ∈ V(I), by their truth value, and by recursively propa-
gating truth values through Boolean connectives. In particular, for a CNF formula
this consists in removing satisfied clauses as well as falsified literals. By “=” in
F|I = 1 and F|I = 0, notably by omitting quantifiers, we explicitly mean syntac-
tical equality and consider the (possibly partial) assignment represented by I, i.e.,
only the literals on I. The notion of residual is extended similarly to clauses and
literals. We denote by X− I the unassigned variables in X. By π(I, X) we refer to
the projection of I onto X and extend this notation to sets of literals.

The decision level function δ : V 7→ N ∪ {∞} returns the decision level of a vari-
able v. If v is unassigned, we have δ(v) = ∞, and δ is updated whenever v is as-
signed or unassigned. We define δ(`) = δ(V(`)) for a literal `, δ(C) = max{δ(`) |
` ∈ C} for a clause C 6= 0, and δ(I) = max{δ(`) | ` ∈ I} for a sequence of lit-
erals I 6= ε. Further, δ(L) = max{δ(`) | ` ∈ L} for a set of literals L 6= ∅. We
define δ(0) = δ(ε) = δ(∅) = 0. The updated function δ, in which V(`) is assigned
to decision level d, is denoted by δ[` 7→ d]. If all literals in V are unassigned, we
write δ[V 7→ ∞] or δ ≡ ∞. The function δ is left-associative, i.e., δ[I 7→ ∞][` 7→ d]
first unassigns all literals on I and then assigns literal ` to decision level d. We
mark the decision literals on I by a superscript, i.e., `d, and denote the set consist-
ing of the decision literals on I by decs(I) = {` | `d ∈ I}. Similarly, we denote
the set of unit literals in F or its residual under I by units(F) or units(F|I). Trails
are partitioned into decision levels, and I6n is the subsequence of I consisting of all
literals ` where δ(`) 6 n.

Following Sebastiani [177], we say that a (partial) assignment I entails a for-
mula F, if all total extensions of I satisfy F. In this work it was noticed that, if I
entails F, we can not conclude that F|I = 1, but only that F|I is valid. Consider
as an example F = (x ∧ y) ∨ (x ∧ ¬y) over variables X = {x} and Y = {y} and
the trail I = x ranging over X ∪ Y. The possible extensions of I are I′ = xy and
I′′ = x¬y. We have F|I′ = F|I′′ = 1, therefore I entails F. Notice that F|I = y ∨ ¬y
is valid but it syntactically differs from 1.

18.3 early pruning for projected model enumeration

Our approach is inspired by how theory solvers and the SAT solver interact in
lazy SMT. A general schema is described in Figure 18.1. Let F(X, Y) be a for-
mula over relevant variables X and irrelevant variables Y such that X ∩ Y = ∅. A
SAT solver executes enumeration, either DPLL-based [60, 61] or CDCL-based [128,
146], on F, maintaining a trail I over variables X ∪ Y. In lines 1–16 and 23–24, we
consider the CDCL-based enumeration engine with chronological backtracking of
our framework [139]. Now assume unit propagation has been carried out until

138 paper 5 : four flavors of entailment

Input: formula F(X, Y) over variables X ∪Y such that X ∩Y = ∅,
trail I, decision level function δ

Output: DNF M consisting of models of F projected onto X

Enumerate (F)
1 I := ε // empty trail
2 δ := ∞ // unassign all variables
3 M := 0 // empty DNF
4 forever do
5 C := PropagateUnits (F, I, δ)
6 if C 6= 0 then // conflict
7 c := δ(C) // conflict level
8 if c = 0 then
9 return M

10 AnalyzeConflict (F, I, C, c)
11 else if all variables in X ∪Y are assigned then // I is total model
12 if V(decs(I)) ∩ X = ∅ then // no relevant decision left
13 return M ∨ π(I, X) // record I projected onto X
14 M := M ∨ π(I, X)

15 b := δ(decs(π(I, X))) // highest relevant decision level
16 Backtrack (I, b− 1) // flip last relevant decision
17 else if Entails (I, F) then // I is partial model
18 if V(decs(I)) ∩ X = ∅ then // no relevant decision left
19 return M ∨ π(I, X) // record I projected onto X
20 M := M ∨ π(I, X)

21 b := δ(decs(π(I, X))) // highest relevant decision level
22 Backtrack (I, b− 1) // flip last relevant decision
23 else
24 Decide (I, δ)

Figure 18.1: Early pruning for projected model enumeration. Lines 1–16 and 23–24 list
CDCL-based model enumeration with chronological backtracking. If after
unit propagation no conflict occurs and not all variables are assigned, an ora-
cle might be called to check whether I entails F (line 17). If Entails returns 1,
the relevant decision literal with highest decision level might be flipped. Oth-
erwise, a decision is taken (line 24). Notice that lines 12–16 and lines 18–22

are identical.

completion, no conflict occurred and there are still unassigned variables (line 17).
The trail I already might entail F, although F|I 6= 1. We can check whether I
entails F by an incremental call to an “oracle” [129] Entails on I and F. If En-
tails returns 1, then the procedure does not need to test any total extension of I,
since all of them are models of F. It can proceed and flip the relevant decision lit-
eral with highest decision level (lines 21–22). If Entails returns 0, a decision needs
to be taken (line 24). Notice that lines 12–16 and lines 18–22 are identical. Our
method is based on chronological backtracking and follows the scheme in our
framework [139], the functions PropagateUnits() and AnalyzeConflict() are taken

18.4 testing entailment 139

from our previous work [138]. Entails plays the role of an “early pruning call” to
a theory solver in SMT, and F plays the role of the theory [176]. Redundant work
is saved by applying unit propagation until completion before calling Entails.
Quantified entailment condition. We use quantifiers with QBF semantics, and quan-
tified formulae are always closed. A closed QBF formula evaluates to either 1 or 0.
Consider ϕ = ∀X∀Y [F|I], where F is a formula over variables X ∪ Y and the
trail I ranges over X ∪ Y. In ϕ, the remaining variables (X ∪ Y) − I are quanti-
fied. Accordingly, by ∀X∀Y [F|I] = 1, we express that all possible total extensions
of I satisfy F, in contrast to F|I = 1, expressing syntactic equality according to
Section 18.2. The latter fact implies the former, but not vice versa.

Entailment under projection. If Entails implements the notion of entailment de-
scribed in Section 18.2, then by calling it on I and F, we check whether F|J = 1
for all total extensions J of I, i.e., whether ∀X∀Y [F|I] = 1. However, since we are
interested in the models of F projected onto X, it suffices to check that for each
possible assignment JX to the unassigned variables in X, there exists one assign-
ment JY to the unassigned variables in Y such that F|I′ = 1 where I′ = I ∪ JX ∪ JY.
In essence, we need to determine the truth of the QBF formula ∀X∃Y [F|I], which,
in general, might be expensive, computationally. In some cases, however, a com-
putationally cheaper (but weaker) test might be sufficient. Entails in line 17 of
Enumerate can be seen as a black box pooling four entailment tests of different
strengths, which we discuss in the next section.

18.4 testing entailment

Consider the original entailment condition, ∀X∀Y [F|I] = 1. Now we have that
∀X∀Y [F|I] = 1 ⇐⇒ ∃X∃Y [¬F|I] = 0. Therefore, to check whether I entails F,
a SAT solver might be called to check whether ¬F ∧ I is unsatisfiable. The SAT
solver returns “unsat”, if and only if I entails F. This observation motivates the
use of dual reasoning for testing entailment in cases where cheaper tests fail. We
present four flavors of the entailment test and provide examples.

1) F|I = 1 (syntactic check). If F|I = 1, also ∀X∀Y [F|I] = 1, and I entails F.

2) F|I ≈ 1 (incomplete check in P). Alternatively, if F|I differs from 1, an incom-
plete algorithm might be used, to check whether ¬F ∧ I is unsatisfiable, by
for instance executing only unit propagation or aborting after a predefined
number of decision levels.

3) F|I ≡ 1 (semantic check in coNP). A SAT oracle runs on ¬F ∧ I until termi-
nation. Basically, it checks the unsatisfiability of ¬F∧ I, i.e., whether it holds
that ∃X∃Y [¬F|I] = 0. If it answers “unsat”, then I entails F.

4) ∀X∃Y [F|I] = 1 (check in ΠP
2). A QBF oracle is called to check whether the

2QBF formula ∀X∃Y [F|I] is 1.

Modern SAT solvers mostly work on CNFs. Thus, following our dualization ap-
proach [137], we may convert F(X, Y) and ¬F(X, Y) into CNF formulae P(X, Y, S)
and N(X, Y, T), where S and T denote the variables introduced by the CNF en-
coding. Notice that I ∧ ¬F is unsatisfiable iff I ∧ N is unsatisfiable.

Table 18.1 lists four examples, which differ in the strength of the required entail-
ment test. The first column lists the formula F, the second and third column show

140 paper 5 : four flavors of entailment

Table 18.1: Examples of formulae F over relevant variables X and irrelevant variables Y.
For a concise representation of formulae, we represent conjunction by juxtapo-
sition and negation by overline. In all examples, I entails F projected onto X.
The entailment tests are listed from left to right in ascending order by their
strength. Here, “X” denotes the fact that I passes the test in the column, if
applied to the formula in the row.

F X Y I = 1 ≈ 1 ≡ 1 2QBF

(x1 ∨ y ∨ x2) {x1, x2} {y} x1 X X X X

x1y ∨ yx2 {x1, x2} {y} x1x2 X X X

x1(x2 y ∨ x2y ∨ x2y ∨ x2y) {x1, x2} {y} x1 X X

x1(x2 ↔ y) {x1, x2} {y} x1 X

the definitions of X and Y. For a concise representation of formulae, we represent
conjunction by juxtaposition and negation by overline. The fourth column contains
the current trail I. The fifth to eighth column denote the tests, in ascending order
by their strength: F|I = 1, F|I ≈ 1, F|I ≡ 1, ∀X∃Y [F|I] = 1. In all examples, I
entails F, and “X” denotes the fact that I passes the test in the column, if applied
to the formula in the row.

Consider the first example, F = (x1 ∨ y ∨ x2) and I = x1. We have F|I = 1,
and I entails F, which is detected by the syntactic check. For the second example,
F = x1y ∨ yx2, we have F|I = y ∨ y, which is valid, but it syntactically differs
from 1. The SAT solver therefore calls Entails on ¬F ∧ I. For ¬F = (x1 ∨ y)(y∨ x2),
we find ¬F|I = (y)(y). After propagating y, a conflict at decision level zero occurs,
hence Entails returns 1, and an incomplete test is sufficient. In this example, ¬F
is already in CNF. The key idea conveyed by it can easily be lifted to the case
where additional variables are introduced by the CNF transformation of ¬F. For
the third example, F = x1(x2 y ∨ x2y ∨ x2y ∨ x2y), both P|I and N|I are undefined
and contain no units. However, N|I is unsatisfiable, the SAT oracle call on N ∧ I
terminates with “unsat”, and Entails returns 1. Hence, this example requires at
least a SAT oracle. For the last example, F = x1(x2 ↔ y), we define

P = (x1)(s1 ∨ s2)(s1 ∨ x2)(s1 ∨ y)(s2 ∨ x2)(s2 ∨ y) with S = {s1, s2} and

N = (x1 ∨ t1 ∨ t2)(t1 ∨ x2)(t1 ∨ y)(t2 ∨ x2)(t2 ∨ y) with T = {t1, t2}

We have P|I 6= 1. Neither P|I nor N|I contains a unit literal, hence the incomplete
test is too weak. Assume a SAT solver is called to check unsatisfiability of N ∧ I,
and x2 is decided first. After propagating t2, t1 and y, a total model of N is found.
The SAT solver answers “sat”, and Entails returns 0. A QBF solver checking ϕ =
∀X∃Y [x2y ∨ x2 y] returns 1. In fact, ϕ is true for I = x2y and I = x2 y, and Entails
answers 1. Thus, at least a QBF oracle is needed.

18.5 formalization

The algorithm listed in Figure 18.1 can be expressed by means of a formal calculus.
It extends our previous calculus [139] by projection and by a generalized precondi-
tion modeling an incremental call to an oracle for checking entailment (lines 17–22

18.5 formalization 141

EndTrue: (F, I, M, δ) ;EndTrue M ∨m if V(decs(I)) ∩ X = ∅ and

m def
= π(I, X) and ∀X∃Y [F|I] = 1

EndFalse: (F, I, M, δ) ;EndFalse M if exists C ∈ F and C|I = 0 and

δ(C) = 0

Unit: (F, I, M, δ) ;Unit (F, I`, M, δ[` 7→ a]) if F|I 6= 0 and

exists C ∈ F with {`} = C|I and a def
= δ(C \ {`})

BackTrue: (F, I, M, δ) ;BackTrue (F, UK`, M ∨m, δ[L 7→ ∞][` 7→ b]) if

UV def
= I and D def

= π(decs(I), X) and b + 1 def
= δ(D) 6 δ(I) and

` ∈ D and b = δ(D \ {`}) = δ(U) and m def
= π(I, X) and

K def
= V6b and L def

= V>b and ∀X∃Y [F|I] = 1

BackFalse: (F, I, M, δ) ;BackFalse (F, UK`, M, δ[L 7→ ∞][` 7→ j]) if

exists C ∈ F and exists D with UV def
= I and C|I = 0 and

c def
= δ(C) = δ(D) > 0 such that ` ∈ D and ` ∈ decs(I) and

`|V = 0 and F ∧M |= D and j def
= δ(D \ {`}) and

b def
= δ(U) = c− 1 and K def

= V6b and L def
= V>b

DecideX: (F, I, M, δ) ;DecideX (F, I`d, M, δ[` 7→ d]) if F|I 6= 0 and

units(F|I) = ∅ and δ(`) = ∞ and d def
= δ(I) + 1 and V(`) ∈ X

DecideY: (F, I, M, δ) ;DecideY (F, I`d, M, δ[` 7→ d]) if F|I 6= 0 and

units(F|I) = ∅ and δ(`) = ∞ and d def
= δ(I) + 1 and

V(`) ∈ Y and X− I = ∅

Figure 18.2: Rules for Enumerate.

in function Enumerate). Notably, in our work [139], only total models are found,
while entailment in our actual work enables the detection of partial models. The
variables in Y and S (from the CNF encoding) are treated equally with respect to
unit propagation and decision. We therefore merge those two variable sets into Y
to simplify the formalization. This does not affect the outcome of the entailment
test. In favor of a concise description of the rules, we emphasize the differences to
our previous framework [139] and refer to this work for more details.

The procedure terminates as soon as either a conflict at decision level zero oc-
curs (rule EndFalse) or a possibly partial model is found and I contains no rele-
vant decision literal (rule EndTrue). Requiring that no relevant decision is left on
the trail prevents the recording of redundant models. The projection of I onto X
is recorded. Rule Unit remains unchanged except for the missing precondition
F|I 6= 1. If I entails F and contains relevant decision literals, the one at the highest
decision level is flipped, and the projection of I onto X is recorded (rule BackTrue).

142 paper 5 : four flavors of entailment

Requiring that the last relevant decision literal is flipped prevents the recording
of redundant models. Rule BackFalse remains unchanged. A decision is taken
whenever F|I 6= 0 and F|I contains no unit. Relevant variables are prioritized
(rule DecideX) over irrelevant ones (rule DecideY).

Although not mandatory for correctness, the applicability of rule Unit might be
restricted to the case where F|I 6= 1. Similarly, a decision might be taken only if I
does not entail F. Notice that in rules Unit, DecideX, and DecideY, the precondition
F|I 6= 0 can also be omitted.

18.6 conclusion

In many applications (projected) partial models play a central role. For this pur-
pose, we have presented an algorithm and its formalization inspired by how the-
ory solvers and the SAT solver interact in SMT. The basic idea was to detect partial
assignments entailing the formula on-the-fly. We presented entailment tests of dif-
ferent strength and computational cost and discussed examples.

The syntactic check “F|I = 1” is cheapest, using clause watches or counters for
keeping track of the number of satisfied clauses or alternatively the number of
assigned variables (line 11 in Figure 18.1). It is also weakest, since F|I must syn-
tactically coincide with 1. The incomplete check, denoted by “F|I ≈ 1”, is slightly
more involved. It calls a SAT solver on the negation of the formula, restricted,
e.g., to unit propagation or a limited number of decision levels, and also might
return “unknown”. The SAT oracle executes an unsatisfiability check of ¬F ∧ I,
given a (partial) assignment I, which might be too restrictive. The QBF oracle is
the most powerful test, but also the most expensive one. It captures entailment
under projection in a precise manner expressed by ∀X∃Y [F|I] = 1. Combining
dual reasoning with oracle calls allows to avoid shrinking of total models. Finally,
chronological CDCL renders the use of blocking clauses superfluous.

We claim that this is the first method combining dual reasoning and chrono-
logical CDCL for partial model detection. It is anticipated that applications with
short partial models benefit most, since oracle calls might be expensive. We plan
to implement our method and validate its competitiveness on applications from
weighted model integration and model counting with or without projection. We
also plan to investigate methods concerning the implementation of QBF oracles
required by flavor 4), e.g., dependency schemes introduced by Samer and Szei-
der [168] or incremental QBF solving proposed by Lonsing and Egly [122].

19
D I S C U S S I O N O F PA P E R 5

The main contributions are pointed out in Section 19.1. Our goal was to detect
shorter models than in our previous work [139] presented in Chapter 16. However,
the note in Section 18.5 saying “Notably, in our work [139], only total models
are found” requires some explanation, since we have seen in Example 16.2 and
Section 17.2 that our calculus [139] is indeed able to detect partial models. We
take a closer look at model detection in Section 19.2.

19.1 main contributions

We present an algorithm and its formalization for enumerating the (partial) mod-
els of a propositional formula. Our framework is based on chronological CDCL
and is therefore exempt from blocking clauses. It extends our previous calcu-
lus [139] by projection and by a generalized precondition based on the notion of
logical entailment precised by Sebastiani [177] in the context of SAT solving. Our
model enumerator takes as input a propositional formula F(X, Y) defined over
the disjoint sets of relevant and irrelevant variables X and Y, respectively. It runs
chronological CDCL, but before taking a decision it checks whether the current
partial assignment logically entails the input formula.

We are interested in the models of F(X, Y) projected onto X, i. e., the precise
entailment condition is given by ∀X∃Y[F|I], which is in ΠP

2 and requires an incre-
mental QBF oracle call. This is computationally expensive, and we provide three
cheaper alternatives, which sometimes might be sufficient. The first test is purely
syntactic. It consists in computing the residual F|I , similarly to our previous work,
and similarly, to the SMT solver SPASS-SATT [33, 34], which checks whether all
clauses in F are satisfied by I before taking a decision. The second and third test
involve checking whether ¬F ∧ I is unsatisfiable, in which case I is a model of F.
The second test is incomplete and might return “unknown”. It consists in, e. g.,
executing unit propagation on ¬F ∧ I, or aborting after a predefined number of
decision levels and is in P. In the third test, the SAT oracle is run on ¬F ∧ I until
termination. This test is therefore in coNP. The fourth and most expensive test
is also the most powerful one, since it captures the precise entailment condition
under projection. It is the one mentioned above requiring a QBF oracle.

Logical entailment enables the detection of short partial models, which is bene-
ficial in several ways: a larger portion of the search space is pruned, model output
requires less time, and storing models requires less space. It further enables a more
compact representation of the input formula than our previous methods. Our mo-
tivation is given by applications in which the size of the detected models is crucial,
and in Section 19.2, we are going to elaborate on model detection.

143

144 discussion of paper 5

19.2 model detection

In this section, the models detected by applying different entailment checks are
highlighted and qualitatively compared with the models obtained in our previous
work on dual projected model counting [137], referred to as “dual framework”,
and chronological CDCL for model counting [139], called “chronological frame-
work”. The rules are shown in Figure 11.2 and Figure 16.3. We consider a proposi-
tional formula F(X, Y) defined over the set of relevant variables X and the set of
irrelevant variables Y and am interested in the models of F(X, Y) projected onto X.
For the dual calculus, we call P(X, Y, S) and N(X, Y, T) the CNF transformations
of F and its negation ¬F, respectively, where S and T denote the disjoint sets of
auxiliary variables introduced by the CNF transformation.

1) F | I = 1. This test corresponds to the satisfiability check in the precondition
of rules EP1, BP1Fand BP1Lin our dual framework. Also, the check whether a
conflict occurred is purely syntactical, since 0 ∈ F|I can be expressed as F|I = 0.
Remember that in our dual framework, according to Equation 11.5 any assign-
ment I falsifying N(X, Y, T) can be extended to a model of P(X, Y, S). However,
this does not mean that P(X, Y, S)|I = 1. Therefore, the models of our dual frame-
work only correspond to the ones detected by the first flavor, if they are found by
means of the rules EP1, BP1Fand BP1Lor if P and N are defined over the same
sets of variables, as in #DPLL [24], which could be considered a special case of our
dual framework [137]. In our chronological framework, assuming F is in CNF and
Y = ∅, the same syntactic check is executed in both rules EndTrue and BackTrue,
and the same models are found by our chronological framework and Enumerate
if in place of the precise entailment check always the first flavor is executed. Our
chronological framework uses exclusively syntactic satisfiability checks, and for
the next three flavors, we only consider our dual framework .

2) F|I ≈ 1. If ∃X∃Y [¬F] = 0 or, stated otherwise, we have that ¬F ∧ I is
unsatisfiable, we know that I is a model of F. Obviously, this check requires an
incremental call to a SAT oracle. However, there might be cases where, e. g., a
conflict in ¬F is obtained by adopting exclusively unit propagation. Since the con-
flict level is zero, ¬F ∧ I is unsatisfiable, and I logically entails F. Similarly, one
could run the SAT oracle on ¬F ∧ I for a predefined number of decision levels,
hoping that this is sufficient to determine its unsatisfiability. In our dual frame-
work, it can happen that a conflict in N is obtained at decision level zero. Con-
sider the formula F(X, Y) = (x ∧ y) ∨ (¬y ∧ x), where X = {x} and Y = {y}.
We have P(X, Y, S) = (¬s1 ∨ x) ∧ (¬s1 ∨ y) ∧ (¬s2 ∨ ¬y) ∧ (¬s2 ∨ x) ∧ (s1 ∨ s2)
and N(X, Y, T) = (¬x ∨ ¬y) ∧ (¬y ∨ x) with S = {s1, s2} and T = ∅. Suppose x
is decided by means of the rule DecideX. The resulting trail I = xd entails F, since
both x y and x¬y are models of F. Now P|I = (¬s1 ∨ y) ∧ (¬s2 ∨ ¬y) ∧ (s1 ∨ s2),
which is undefined, but N|I = (¬y) ∧ (y). A unit literal with variable in X ∪ Y
is propagated in N by deciding its negation, and a decision level is introduced.
Immediately a conflict in N is obtained, but at decision level one and not zero.
Only dual variables, e. g., variables in T, are propagated in N without introduc-
ing a new decision level, and only the case where a conflict occurs by exclusively
propagating dual variables in N is comparable to the second flavor.

19.2 model detection 145

3) F|I ≡ 1. It is straightforward to see that the third flavor is more powerful than
our dual counting framework: Consider the example in the third line of Table 18.1.
We have F(X, Y) = (x1) ∧ (¬x2 ∨ ¬y) ∧ (¬x2 ∨ y) ∧ (x2 ∨ ¬y) ∧ (x2 ∨ y) defined
over the set or relevant variables X = {x1, x2} and the set of irrelevant variables
Y = {y}. Its negation is ¬F = (¬x1)∨ (x2∧ y)∨ (x2∧¬y)∨ (¬x2∧ y)∨ (¬x2∧¬y),
and the CNF transformations of F(X, Y) and ¬F(X, Y) are

P(X, Y, S) = (x1) ∧ (s1 ∨ s2 ∨ s3 ∨ s4)∧
(¬s1 ∨ ¬x2) ∧ (¬s1 ∨ ¬y) ∧ (¬s2 ∨ ¬x2) ∧ (¬s2 ∨ y)∧
(¬s3 ∨ x2) ∧ (¬s3 ∨ ¬y) ∧ (¬s4 ∨ x2) ∧ (¬s4 ∨ y)

N(X, Y, T) = (¬x1 ∨ x2 ∨ y) ∧ (¬x1 ∨ x2 ∨ ¬y)∧
(¬x1 ∨ ¬x2 ∨ y) ∧ (¬x1 ∨ ¬x2 ∨ ¬y)

with S = {s1, s2, s3, s4} and T = ∅. Assume the current trail is I = x1
d. Now

P(X, Y, S)|I = (s1 ∨ s2 ∨ s3 ∨ s4)∧
(¬s1 ∨ ¬x2) ∧ (¬s1 ∨ ¬y) ∧ (¬s2 ∨ ¬x2) ∧ (¬s2 ∨ y)∧
(¬s3 ∨ x2) ∧ (¬s3 ∨ ¬y) ∧ (¬s4 ∨ x2) ∧ (¬s4 ∨ y)

N(X, Y, T)|I = (x2 ∨ y) ∧ (x2 ∨ ¬y) ∧ (¬x2 ∨ y) ∧ (¬x2 ∨ ¬y)

Our dual framework now has to take a decision and continue. The remaining steps
do not matter. The quintessence is that it can not find the model x1: any model
containing x1 it detects, consists of at least two literals. Therefore, the third flavor
is stronger than our dual framework.

4) ∀X∃Y [F|I = 1]. A similar argument shows that the dual framework in gen-
eral detects models which are longer than the ones found by the fourth flavor.
Consider the formula F(X, Y, S) = x1 ∧ (x2 ↔ y) with X = {x1, x2} and Y =
{y} shown in the last row of Table 18.1. The CNF transformations of F(X, Y)
and ¬F(X, Y) are

P(X, Y, S) = (x1) ∧ (s1 ∨ s2) ∧ (¬s1 ∨ x2) ∧ (¬s1 ∨ y)∧
(¬s2 ∨ ¬x2) ∧ (¬s2 ∨ y)

N(X, Y, T) = (¬x1 ∨ t1 ∨ t2) ∧ (¬t1 ∨ x2) ∧ (¬t1 ∨ ¬y)∧
(¬t2 ∨ ¬x2) ∧ (¬t2 ∨ y)

with S = {s1, s2} and T = {t1, t2}. We suppose the trail to be I = x1
d. The

residuals of F(X, Y, S) and N(X, Y, T) are

P(X, Y, S)|I = (s1 ∨ s2) ∧ (¬s1 ∨ x2) ∧ (¬s1 ∨ y) ∧ (¬s2 ∨ ¬x2) ∧ (¬s2 ∨ y)

N(X, Y, T)|I = (t1 ∨ t2) ∧ (¬t1 ∨ x2) ∧ (¬t1 ∨ ¬y) ∧ (¬t2 ∨ ¬x2) ∧ (¬t2 ∨ y)

As in the third flavor, there is no way for our dual framework to find the model x1,
since a second decision need be taken, and therefore each model containing x1
has at least length two. The point is that in our framework we do not make oracle
calls, and the models such an oracle would find is recorded explicitly in our dual
framework. Therefore, it can not find the models returned by the fourth flavor.

20
PA P E R 6 : O N E N U M E R AT I N G S H O RT P R O J E C T E D M O D E L S

submitted. Preprint in: CoRR abs/2110.12924 (2021). arXiv: 2110.12924. url:
https://arxiv.org/abs/2110.12924.1

authors . Sibylle Möhle and Roberto Sebastiani and Armin Biere.

acknowledgments . The work was supported by the LIT Secure and Correct
Systems Lab funded by the State of Upper Austria, by the QuaSI project funded
by D-Wave Systems Inc., and by the Italian Association for Artificial Intelligence
(AI*IA). We also thank Mathias Fleury for a number of helpful discussions, which
in particular led to a more elegant equivalence proof compared to our original
version.

abstract. Propositional model enumeration, or All-SAT, is the task to record
all models of a propositional formula. It is a key task in software and hardware
verification, system engineering, and predicate abstraction, to mention a few. It
also provides a means to convert a CNF formula into DNF, which is relevant in
circuit design. While in some applications enumerating models multiple times
causes no harm, in others avoiding repetitions is crucial. We therefore present two
model enumeration algorithms, which adopt dual reasoning in order to shorten
the found models. The first method enumerates pairwise contradicting models.
Repetitions are avoided by the use of so-called blocking clauses, for which we pro-
vide a dual encoding. In our second approach we relax the uniqueness constraint.
We present an adaptation of the standard conflict-driven clause learning proce-
dure to support model enumeration without blocking clauses. Our procedures
are expressed by means of a calculus and proofs of correctness are provided.

20.1 introduction

The satisfiability problem of propositional logic (SAT) consists in determining whether
for a propositional formula there exists an assignment to its variables which eval-
uates the formula to true, and which we call satisfying assignment or model. For
proving that a formula is satisfiable, it is sufficient to provide one single model.
However, sometimes determining satisfiability is not sufficient but all models are
required. Propositional model enumeration (All-SAT)2 is the task of enumerating
(all) satisfying assignments of a propositional formula. It is a key task in, e. g.,

1 This chapter contains fixes of several minor issues on-top of the version available on arXiv.
2 For the sake of readability, we use the term All-SAT also if not all models are required since in

principle such an algorithm could always be extended to determine all models.

147

https://arxiv.org/abs/2110.12924

148 paper 6 : on enumerating short projected models

bounded and unbounded model checking [21, 103, 131, 132, 184, 185], image com-
putation [94, 95, 119, 180], system engineering [187], predicate abstraction [118],
and lazy Satisfiability Modulo Theories [176].

Model enumeration also provides a means to convert a formula in Conjunctive
Normal Form (CNF) into a logically equivalent formula in Disjunctive Normal
Form (DNF) composed of the models of the CNF formula. This conversion is
used in, e. g., circuit design [134] and has also been studied from a computational
complexity point of view [195]. If the models found are pairwise contradicting,
the resulting DNF is a Disjoint Sum-of-Product (DSOP) formula, which is rele-
vant in circuit design [17, 136], and whose models can be enumerated in polyno-
mial time [139] by simply returning their disjuncts. If the models found are not
pairwise contradicting, the resulting formula is still a DNF but does not support
polytime model counting. Our model enumeration algorithm basically executes
a CNF to DNF conversion, and from this point of view, it can be interpreted as a
knowledge compilation algorithm.

The aim of knowledge compilation is to transform a formula into another lan-
guage3 on which certain operations can be executed in polynomial time [39, 59].
This can be done, for instance, by recording the trace of an exhaustive search [100,
114, 148], and the target language in these approaches is the deterministic Decom-
posable Normal Form (d-DNNF),4 which was applied, for instance, in planning
[162]. In contrast, in our work we record the models of the input formula, and the
resulting formula is in d-DNNF only if the detected models are pairwise contra-
dicting.

Enumerating models requires to process the search space exhaustively and is
therefore a harder task than determining satisfiability. However, since state-of-the-
art SAT solvers are successfully applied in industrial applications, it seems natural
to use them as a basis for model enumeration. Modern SAT solvers implement
conflict-driven clause learning (CDCL) [127, 128, 146] with non-chronological backtrack-
ing.5 If a CDCL-based SAT solver is extended to support model enumeration, ad-
equate measures need be taken to avoid enumerating models multiple times as
demonstrated by the following small example.

Example 20.1 (Multiple model enumeration). Consider the propositional formula

F = (a ∨ c)︸ ︷︷ ︸
C1

∧ (a ∨ ¬c)︸ ︷︷ ︸
C2

∧ (b ∨ d)︸ ︷︷ ︸
C3

∧ (b ∨ ¬d)︸ ︷︷ ︸
C4

which is defined over the set of variables V = {a, b, c, d}. Its total models are models(F) =
{a b c d, a b c¬d, a b¬c d, a b¬c¬d}. These models may be represented by a b, i. e., they
are given by all total extensions of a b.

Let our model enumerator be based on CDCL with non-chronological backtracking. As-
sume we first decide a, i. e., assign a the value true, and then b. This (partial) assign-
ment a b is a model of F. As in our previous work on propositional model counting [139],
we flip the second decision literal, i. e., assign b the value false, in order to explore the
second branch, upon which the literal d is forced to true in order to satisfy clause C3. The
resulting assignment a¬b d now falsifies clause C4, i. e., sets all its literal to false. Conflict

3 A language in this context refers one of the various forms a formula can be expressed in, e. g., CNF
and DNF denote the languages we are mostly interested in in this article.

4 A formula is in d-DNNF, if (1) the sets of variables of the conjuncts of each conjunction are pairwise
disjoint, and (2) the disjuncts of each disjunction are pairwise contradicting [59].

5 Also referred to as backjumping in the literature.

20.1 introduction 149

analysis yields the unit clause C5 = (b), which is added to F. The enumerator then back-
tracks to decision level zero, i. e., unassigns d, b and a, and propagates b with reason C5.
No literal is enforced by the assignment b, and a decision need be taken. If we choose a, F
is satisfied. The model found is b a, which is the one we had found earlier.

Multiple model enumeration in Example 20.1 is caused by the fact that after
conflict analysis the same satisfying assignment is repeated, albeit in reverse or-
der. More generally, the same satisfying assignment might be found again if the
enumerator backtracks past a flipped decision literal. Avoiding enumerating mod-
els multiple times is crucial in, e. g., weighted model counting (WMC) [48, 63, 76,
174] and Bayesian inference [12], which require enumerating the models in order
to compute their weight or probability. Another example is weighted model inte-
gration (WMI) [142, 143] which generalizes WMC for hybrid domains. In some ap-
plications, repeating models might lead to inefficiency and harm scalability [187].
In the context of model counting but also relevant in model enumartion, Bayardo
and Pehoushek [15] identified the need for good learning similarly to its learn-
ing counterpart in CDCL, and various measures have therefore been proposed to
avoid the multiple enumeration of models.

One possibility is to rule out a model which was already found by adding a
blocking clause to the formula [131, 137, 145], which in essence is the negation of
the model or the decision literals in the model to be blocked [145]. Whenever a
satisfying assignment is repeated, the clause blocking it is falsified, and thus this
model is not enumerated again. As soon as all models are found and the relevant
blocking clauses added, the formula becomes unsatisfiable. However, there might
be an exponential number of models and adding a blocking clause for each of them
might result in a significant negative impact on the enumerator performance. In
these cases, multiple model enumeration need be prevented by other measures.
Toda and Soh [191] address this issue by adopting a variant of conflict analysis
which is inspired by Gebser et al. [84] and is exempt from blocking clauses.

The use of blocking clauses can also be avoided by adopting the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm [60]. In DPLL, after a conflict or a model
the last decision literal is flipped causing the solver to find only pairwise contra-
dicting models. This idea was applied in the context of model counting by Birn-
baum and Lozinskii [27] but can readily be adapted to support model enumer-
ation. Chronological backtracking in Grumberg et al. [94] and in part in Gebser
et al. [84] ensures that the search space is traversed in a systematic manner simi-
larly to DPLL, and that the use of blocking clauses can be avoided. An apparent
drawback of DPLL-based solvers, however, is that they might spend a significant
amount of time in regions of the search space having no satisfying assignments,
since—unlike CDCL-based solvers—they lack the possibility to escape those re-
gions early.

This last issue can be addressed by the use of chronological CDCL introduced
by Nadel and Ryvchin [138, 149]. Chronological CDCL combines the power of
conflict-driven clause learning with chronological backtracking. Specifically, after
finding a model, the last open (left) decision literal is flipped in order to process
neighboring regions of the search space, while in case of a conflict, the solver is
able to escape regions without solution early. In our earlier work [139], we devel-
oped a calculus for propositional model counting based on chronological CDCL
and provided a proof of its correctness. We took a model enumeration approach
making our method readily applicable in the context of model enumeration with-
out repetition. However, while finding short models is crucial in, e. g., weighted

150 paper 6 : on enumerating short projected models

model integration [142, 143], in an implementation only total models6 might be
detected as is usual in CDCL-based SAT solvers. The reason is a simple one.

To detect when a partial assignment7 is a model of the input formula, the SAT
solver would have to carry out satisfiability checks before every decision, as done
by Birnbaum and Lozinskii [27]. These satisfiability checks are expensive, and
assigning the remaining variables instead is more efficient, computationally. If all
variables are assigned and no conflict has occurred, the SAT solver knows to have
found a model. This makes sense in SAT solving. Model enumeration, however, is
a harder task, and therefore more expensive methods might pay off.

One such method is dual reasoning [24, 137]. Our dual model counter Dualiza8

takes as input the formula under consideration together with its negation. The
basic idea is to execute CDCL on both formulae simultaneously maintaining one
single trail. Whenever a conflict in the negated formula occurs, the current (partial)
assignment is a model of the formula. Although developed for model counting, its
adaptation for model enumeration is straightforward.

Another idea enabling the detection of short models was to check whether all
total extensions of the current (partial) assignment evaluate the input formula to
true before taking a decision, i. e., whether the current assignment logically entails
the input formula [141, 177].

Partial assignments evaluating the input formula to true represent sets of to-
tal models of the input formula. However, these sets might not be disjoint, as is
demonstrated by the following example.

Example 20.2 (Short redundant models). Let F = (a ∧ b) ∨ (a ∧ c) be a propo-
sitional formula defined over the set of variables V = {a, b, c}. Notice that F is not
in CNF and significantly differs from the one in our previous example. Its total models
are models(F) = {a b c, a b¬c, a¬b c}. These models may also be represented by the two
partial models a b and a c. The former represents a b c and a b¬c, whereas the latter repre-
sents a b c and a¬b c. Notice that a b c occurs twice.

Partial assignments evaluating the input formula to true result in blocking
clauses which are shorter than the ones blocking one single total model. Adding
short blocking clauses has a twofold effect. First, a larger portion of the search
space is ruled out. Second, fewer blocking clauses need be added which mitigates
their negative impact on solver performance. Also, short blocking clauses gener-
ally propagate more eagerly than long ones. The need for shrinking or minimizing
models has been pointed out by Bayardo and Pehoushek [15] and addressed fur-
ther [10, 103, 165]. Notice that with blocking clauses CDCL can be used as in SAT
solving, while in the absence of blocking clauses it need be adapted.

The reason is as follows. If a CDCL-based SAT solver encounters a conflict, it
analyzes it and learns a clause9 in order to prevent the solver from repeating the
assignment which caused the conflict. This clause is determined by traversing the
trail in reverse assignment order and resolving the reasons of the literals on the
trail, starting with the conflicting clause, until the resolvent contains one single
literal at the maximum decision level. If a model is found, the last decision literal
is flipped in order to explore another branch of the search space. This leads to
issues if this literal is encountered in later conflict analysis and no blocking clause
was added, since in this case it is neither a decision literal nor a propagated literal.

6 In total models all variables occur.
7 In a partial assignment not all variables occur.
8 https://github.com/arminbiere/dualiza
9 We say that a clause is learned if it is added to the formula.

https://github.com/arminbiere/dualiza

20.1 introduction 151

To address this issue, Grumberg et al. [94] introduce sub-levels for flipped de-
cision literals treating them similarly to decision literals in future conflict anal-
ysis. Similarly to Gebser et al. [84], Toda and Soh [191] limit the level to which
the solver is allowed to backtrack. These measures also ensure that enumerating
overlapping partial models is avoided. However, in applications where repetitions
cause no harm, the power of finding even shorter models representing larger, al-
beit not disjoint, sets of models, can be exploited. Shorter models are also obtained
in the case of model enumeration under projection.

If not all variables are relevant in an application, we project the models of the
input formula onto the relevant variables, or, otherwise stated, we existentially
quantify the irrelevant variables. Projection occurs in, e. g., model checking [184,
185], image computation [94, 95], quantifier elimination [32, 203], and predicate
abstraction [118]. The breadth of these applications highlights the relevance of
projection in practice.

In this article we address the task of enumerating short projected models with
and without repetition. We start by presenting a CDCL-based algorithm for the
case where only pairwise contradicting, i. e., irredundant, models are sought. Mul-
tiple model enumeration is prevented by the addition of blocking clauses to the
input formula, and dual reasoning is adopted for model shrinking. To ensure cor-
rectness of the latter, we introduce the concept of dual blocking clauses, which pro-
vides a solution to an issue identified in our earlier work [137]. Dual reasoning in
model shrinking enables us to obtain short models, and CDCL lets us exploit the
strengths of state-of-the-art SAT solvers. We express our algorithm by means of a
formal calculus and provide a correctness proof.

We then present a relaxed version of our algorithm for enumerating non-contra-
dicting, i. e., redundant, models. This method is exempt of blocking clauses, and
consequently decision literals which were flipped after a model lack a reason. To
fix this issue, we introduce an adaptation of CDCL for SAT to All-SAT. We dis-
cuss the changes to our previous algorithm needed in order to support redundant
model enumeration. In the calculus, one rule is affected. We present the adapted
rule and point out the relevant changes in the proofs.

This article builds on our work presented at the 23rd International Conference
on Theory and Applications of Satisfiability Testing (SAT) 2020 [141]. It also uses
concepts introduced by Sebastiani [177], and presented at the Second Young Scien-
tist’s International Workshop on Trends in Information Processing (YSIP2) 2017 [24]
and the 30th International Conference on Tools with Artificial Intelligence (ICTAI)
2018 [137], the 22nd International Conference on Theory and Applications of Sat-
isfiability Testing (SAT) 2019 [138], and the 5th Global Conference on Artificial
Intelligence (GCAI) 2019 [139].

structure of the paper . In Section 20.2 we give an overview over our con-
tributions, before we introduce our notation and basic concepts needed in Sec-
tion 20.3. The definitions of soundness and completeness adopted in SAT and their
interpretation for model enumeration are given in Section 20.4. Dual reasoning is
applied for shrinking models in Section 20.5, and an according dual encoding of
blocking clauses is introduced in Section 20.6. After presenting our algorithm for
projected model enumeration without repetition in Section 20.7 and providing a
formalization and correctness proof and a generalization to the detection of par-
tial models in Section 20.8, we turn our attention to projected model enumeration
with repetition. We adapt CDCL for SAT to support conflict analysis in the context

152 paper 6 : on enumerating short projected models

of model enumeration without the use of blocking clauses in Section 20.9 and dis-
cuss the changes to our method needed to support multiple model enumeration
in Section 20.10, before we conclude in Section 20.11.

20.2 overview of contributions

In this section, we give a high-level overview over our contributions.

20.2.1 Correctness with Respect to Model Enumeration

We recall the definitions of soundness and completeness in the context of SAT
solving according to Weidenbach [197], before stating them for All-SAT.

20.2.2 Model Shrinking

Obtaining short models is our main aim in this work. To this end, in our model
enumeration algorithms we adopt a dual method for model shrinking.

Basically, whenever a model is found, a second SAT solver is called incremen-
tally on this model and the negation of the formula. A conflict is obtained and
conflict analysis executed to determine the literals involved in the conflict, which
constitutes the shortened model.

20.2.3 Irredundant Model Enumeration Under Projection

We present a CDCL-based algorithm for projected model enumeration without
repetition using dual model shrinking and blocking clauses. In a dual setting,
models need be blocked not only in the formula but in its negation as well. A
model is blocked in the negated formula by disjoining the two. However, the re-
sulting formula is no longer in CNF. To address this issue, we present a dual
encoding for blocking clauses.

The shrunken model is then used to determine the backtrack level, which might
be much smaller than the current one. Conflict analysis and unit propagation are
executed as in CDCL. The blocking clauses ensure no problems arise in conflict
analysis. Our algorithm is expressed by means of a calculus whose rules cover
termination, backtracking, unit propagation and decisions.

We identify three invariants and show that they hold in all non-terminal states,
that our system always makes progress, and that it eventually terminates. Equiv-
alence of the resulting formula and the input formula projected onto the relevant
variables proves soundness and completeness and concludes our proof.

A generalization of our algorithm to the case where partial satisfying assign-
ments are found is discussed. This generalization makes sense since we do not
guarantee that our model shrinking method gives us the minimal model.

20.2.4 Redundant Model Enumeration Under Projection

This method uses dual model shrinking. It is exempt of blocking clauses, and the
conflict analysis procedure need be adapted. We propose to annotate the flipped
decision literals with the clause which would be added as blocking clause and dis-

20.3 preliminaries 153

cuss the relevant changes to our algorithm, calculus, proof, and its generalization
to the case where partial models are found.

20.3 preliminaries

In this section we provide the concepts and notation on which our presentation
relies: propositional satisfiability (SAT) and incremental SAT solving, projection,
and the dual representation of a formula, which constitutes the basis for dual
reasoning.

20.3.1 Propositional Satisfiability (SAT)

The set containing the Boolean constants 0 (false) and 1 (true) is denoted with
B = {0, 1}. Let V be a set of propositional (or Boolean) variables. A literal is either
a variable v ∈ V or its negation ¬v. We write ` to denote the complement of `
assuming ` = ¬` and ¬¬` = `. The variable of a literal ` is obtained by var(`).
This notion is extended to formulae, clauses, cubes, and sets of literals.

Most SAT solvers work on formulae in Conjunctive Normal Form (CNF), which
are conjunctions of clauses, which are disjunctions of literals. These SAT solvers
implement efficient algorithms tailored for CNFs, such as unit propagation, which
will be presented below. In contrast, a formula in Disjunctive Normal Form (DNF)
is a disjunction of cubes, which are conjunctions of literals. We interpret formulae
as sets of clauses and write C ∈ F to refer to a clause C occurring in the formula F.
Accordingly, we interpret clauses and cubes as sets of literals. The empty CNF
formula and the empty cube are denoted by 1, while the empty DNF formula and
the empty clause are represented by 0.

A total assignment σ : V 7→ B maps V to the truth values 0 and 1. It can be
applied to a formula F over a set of variables V to obtain the truth value σ(F) ∈ B,
also written F|σ. The value of F under σ is denoted by σ(F). A sequence I = `1 . . . `n
with mutually exclusive variables (var(`i) 6= var(`j) for i 6= j) is called a trail. If
their variable sets are disjoint, trails and literals may be concatenated, denoted by
I = I′ I′′ and I = I′`I′′. We treat trails as conjunctions or sets of literals and write
` ∈ I if ` is contained in I. Trails can also be interpreted as partial assignments
with I(`) = 1 iff ` ∈ I. Similarly, I(`) = 0 iff ¬` ∈ I, and I(`) is undefined
iff var(`) 6∈ var(I). The unassigned variables in V are denoted by V − I and the
empty trail by ε.

The literal ` can be either decided or propagated. In the former case, its value
is chosen according to some heuristic by a decision, and ` is called decision literal.
In the latter case, there exists a clause C ∈ F containing ` in which all literals
except ` evaluate to false under the current (partial) assignment. The literal ` is
called unit literal or unit and C a unit clause. In order to satisfy C, and thus F,
the literal ` need be assigned the value true. After being propagated, the literal `
becomes a propagation literal, and C its reason. The corresponding rule is the unit
propagation rule. We annotate decision literals on the trail by a superscript, e. g., `d,
denoting open “left” branches in the sense of DPLL. If a decision literal ` is flipped,
its complement ` opens a “right” branch. Both propagation literals and flipped
decision literals are annotated on the trail by their reason, as in `C.

The trail is partitioned into blocks, called decision levels, which extend from a
decision literal to the last literal preceding the next decision literal. Literals occur-
ring before the first decision are assigned at decision level zero. They are assigned

154 paper 6 : on enumerating short projected models

exclusively by unit propagation. The decision level of a variable v ∈ V is obtained
by applying the decision level function δ : V 7→ N ∪∞. We extend δ accordingly to
literals `, non-empty clauses C, and non-empty sequences of literals I, by defining
δ(`) = δ(var(`)), δ(C) = max{δ(`) | ` ∈ C}, and δ(I) = max{δ(`) | ` ∈ I}. Ac-
cordingly, we define δ(L) = max{δ(`) | ` ∈ L} for a set of literals L 6= ∅. If v is
unassigned, we have δ(v) = ∞, and δ(0) = δ(ε) = δ(∅) = 0 for the empty clause,
the empty sequence and the empty set of literals. Whenever a variable is assigned
or unassigned, the decision level function δ is updated. If var(`) is assigned at
decision level d, we write δ[` 7→ d]. If all variables in the set of variables V are
unassigned, we write δ[V 7→ ∞] or δ ≡ ∞ as a shortcut. Similarly, if all liter-
als occurring in a sequence of literals I are unassigned, we write δ[I 7→ ∞] =
δ[var(I) 7→ ∞]. The function δ is left-associative, i. e., δ[I 7→ ∞][` 7→ d] first
unassigns all variables on I and then assigns literal ` at decision level d.

We call residual of F under I, denoted F|I , the formula I(F) obtained by assigning
the variables in F their truth value. If F is in CNF, this amounts to removing from F
all clauses containing a literal ` ∈ I and removing from the remaining clauses all
occurrences of ¬`. If F|I = 1, we say that I satisfies F or that I is a model of F.
If all variables are assigned, we call I a total model of F. Following the distinction
highlighted by Sebastiani [177], if I is a partial assignment, we say that I evaluates F
to 1, written I ` F, if F|I = 1, and that I logically entails F, written I |= F, or that I
is a partial model of F, if all total assignments extending I satisfy F. Notice that
I ` F implies that I |= F but not vice versa: e. g., if F def

= (a ∧ b) ∨ (a ∧ ¬b) and
I def
= a, then I |= F but I 6` F, because F|I = (b ∨ ¬b) 6= 1. If F is in CNF without

valid clauses, i. e., without clauses containing contradicting literals, then I ` F iff
F|I = 1. We say that I evaluates F to 0 or that I is a countermodel of F, iff F|I = 0.
If F is in CNF, its residual under I contains the empty clause, written 0 ∈ F|I .
Similarly, we say that a conflict occurs and call the clause whose literals are set to
false under I conflicting clause and its decision level conflict level. In CDCL with
non-chronological backtracking this is the current decision level δ(I).

20.3.2 Conflict-Driven Clause Learning

Suppose the current trail I falsifies the formula F. The basic idea is to determine
a clause, let’s say D, containing the negated assignments responsible for the con-
flict. By adding D to F, this assignment is blocked. Moreover, backtracking to the
second highest decision level in D results in D becoming unit, and its literal with
highest decision level is propagated.

A main ingredient of the clause learning algorithm is resolution [166]. Given two
clauses (A ∨ `) and (B ∨ ¬`), where A and B are disjunctions of literals and ` is a
literal, their resolvent (A ∨ `)⊗` (B ∨ ¬`) = (A ∨ B) is obtained by resolving them
on `.

The clause D is determined by a sequence of resolution steps, which can be read
off either the trail or the implication graph, which is defined as follows. Decision
literals are represented as nodes on the left and annotated with their decision
level. Propagated literals are internal nodes with one incoming arc originating
from each node representing a literal in their reason. A conflict is represented by
the special node κ whose incoming arcs are annotated with the conflicting clause.

20.3 preliminaries 155

Example 20.3 (Trail and implication graph). Consider the formula

F = (¬a ∨ b)︸ ︷︷ ︸
C1

∧ (¬c ∨ d)︸ ︷︷ ︸
C2

∧ (¬b ∨ ¬c ∨ ¬d)︸ ︷︷ ︸
C3

over the set of variables V = {a, b, c, d}. Assume we first decide a, then propagate b
with reason C1 followed by deciding c and propagating d with reason C2. Under this
assignment, C3 is falsified. The current trail is given by

I = ad bC1 cd dC2 ,

and the according implication graph is

a@1 b

c@2 d κ

C1

C2

C3

C3

C3

During conflict analysis, the conflicting clause is resolved with the reason of
one of its literals. This procedure is repeated with the reason of one literal in the
resolvent, and so on, until the resolvent contains one single literal at conflict level.
In the following example, clause learning based on I and the implication graph is
shown.

Example 20.4 (Conflict-driven clause learning). Consider the situation in Example 20.3.
The conflicting clause is C3 = (¬b ∨ ¬c ∨ ¬d).

In order do determine the sequence of resolution steps in order to learn a clause from I,
we resolve the conflicting clause C3 with the reason of the last propagated literal on I, C2,
obtaining ¬b ∨ ¬c, which already contains only one literal at conflict level 2, namely ¬c.

Considering the implication graph, we can resolve C3 with either C2 or C1. If we
choose C1, the resolvent (¬a ∨ ¬c ∨ ¬d) contains two literals at conflict level, hence res-
olution with C2 is needed resulting in (¬a ∨ ¬c). Notice that resolving C3 with C2 first
would save one resolution step.

20.3.3 Incremental SAT Solving

The basic idea of incremental SAT solving is to exploit the progress made during
the search process, if similar formulae need be solved. So, instead of discarding
the learned clauses they are retained between the individual SAT calls.

Hooker [98] presented the idea of incremental in the context of knowledge-
based reasoning. Eén and Sörensson [67] introduced the concept of assumptions
in the context of incremental SAT solving, which fits our needs best. Assump-
tions can be viewed as unit clauses added to the formula. They basically represent
a (partial) assignment whose literals remain set to true during the solving process.
In particular, backtracking does not occur past any assumed literal.

20.3.4 Projection

We are interested in enumerating the models of a propositional formula projected
onto a subset of its variables. To this end we partition the set of variables V =

156 paper 6 : on enumerating short projected models

X ∪ Y into the set of relevant variables X and the set of irrelevant variables Y and
write F(X ∪ Y) to express that F depends on the variable set X ∪ Y. Accordingly,
we decompose the assignment σ = σX ∪ σY into its relevant part σX : X 7→ B and
its irrelevant part σY : Y 7→ B following the convention introduced in our earlier
work on dual projected model counting [137]. The main idea of projection onto
the relevant variables is to existentially quantify the irrelevant variables. The total
models of F(X ∪Y) projected onto X are therefore

models(∃Y. F(X, Y)) = {τ : X → B | exists σ : V → B with

σ
(

F(X, Y)
)
= 1 and τ = σX},

and enumerating all models of F without projection is therefore the special case
where Y = ∅. The projection of the trail I onto the set of variables X is denoted
by π(I, X) and π(F(X, Y), X) ≡ ∃Y [F(X, Y)].

Example 20.5 (Projected models). Consider again the formula F in Example 20.1. Its
unprojected total models are given by models(F) = {a b c d, a b c¬d, a b¬c d, a b¬c¬d}.
Its total models projected onto X = {a, c} are a c and a¬c.

In order to benefit from the efficient methods SAT solvers execute on CNF for-
mulae, we transform an arbitrary formula F(X, Y) into CNF by, e. g., the Tseitin
transformation [192].10 By this transformation, auxiliary variables, also referred
to as Tseitin or internal variables, are introduced. The Tseitin transformation is
satisfiability-preserving, i. e., a satisfiable formula is not turned into an unsatisfiable
one and, similarly, an unsatisfiable formula is not turned into a satisfiable one.
The Tseitin variables, which we denote by S, are defined in terms of the variables
in X ∪ Y, which we call input variables. As a consequence, for each total assign-
ment to the variables in X ∪ Y there exists one single assignment to the variables
in S such that the resulting assignment is a model of F, and therefore the model
count is preserved. Due to the introduction of the Tseitin variables the result-
ing formula P(X, Y, S) = tseitin(F(X, Y)) is not logically equivalent to F(X, Y),
i. e., models(F) 6= models(P), and the Tseitin transformation is not equivalence-
preserving. However, the models of P(X, Y, S) projected onto the input variables
are exactly the models of F(X, Y), and

∃ S [P(X, Y, S)] ≡ F(X, Y). (20.1)

The total models of F projected onto X are accordingly given by

models(∃Y, S [P(X, Y, S)]) = models(∃Y [F(X, Y)]). (20.2)

20.3.5 Dual Representation of a Formula

We make use of the dual representation of a formula introduced in our earlier
work [137]. Let F(X, Y) and P(X, Y, S) be defined as in Section 20.3.4, and let
N(X, Y, T) = tseitin(¬F(X, Y)) be a CNF representation of ¬F, where T denotes
the set of Tseitin variables introduced by the transformation, i. e.,

∃ T [N(X, Y, T)] ≡ ¬F(X, Y). (20.3)

10 It turns out that in the context of dual projected model enumeration also the Plaisted-Greenbaum
transformation [164] might be used although in general it does not preserve the model count.

20.4 soundness and completeness 157

The formulae P(X, Y, S) and N(X, Y, T) are a dual representation11 of F(X, Y). For
the sake of readability, we also may write F, P, and N. Notice that this representa-
tion is not unique in general. Besides that, P(X, Y, S) and N(X, Y, T) share the set
of input variables X ∪Y, and S ∩ T = ∅. We have

∃ S [P(X, Y, S)] ≡ ¬∃T [N(X, Y, T)] , (20.4)

and in an earlier work [137] we showed that during the enumeration process a
generalization of the following always holds assuming we first split on variables
in X and then on variables in Y ∪ S but never on variables in T:

(¬∃ T [N(X, Y, T)|I]) |= (∃ S [P(X, Y, S)|I]) , (20.5)

where I is a trail over variables in X ∪Y ∪ S ∪ T. Obviously, also

(∃ S [P(X, Y, S)|I]) |= (¬∃ T [N(X, Y, T)|I]) , (20.6)

saying that whenever I can be extended to a model of P, all extensions of it fal-
sify N. This property is a basic ingredient of our dual model shrinking method.

20.4 soundness and completeness

In this section, we recall the definitions of soundness and completeness with re-
spect to SAT solving following Weidenbach [197] and present their definition in
the context of model enumeration. In his work, Weidenbach refers to total models,
but his definitions are readily applicable for partial models as well. Accordingly,
and as we are targeting the detection of partial models, our definitions apply to
both total and partial models.

Definition 20.1 (Soundness in satisfiability). An algorithm for satisfiability is sound,
iff it is guaranteed that the model it finds is a model of the formula.

Definition 20.2 (Completeness in satisfiability). An algorithm for satisfiability is com-
plete, iff it is guaranteed to find a model if the formula is satisfiable.

Definition 20.3 (Strong completeness in satisfiability). An algorithm for satisfiability
is strongly complete iff it is guaranteed that it finds any model of a satisfiable formula.

Definition 20.1 says that the model returned by a sound satisfiability algorithm
is a model of the formula. In the context of model enumeration, the counterpart
of a model is a sequence containing all models. Hence, soundness in model enu-
meration states that the sequence of models returned by the model enumerator
contains only models of the formula.

Definition 20.4 (Soundness in model enumeration). A model enumeration algorithm
is sound, iff it is guaranteed that the models in the sequence of all models it enumerates
are models of the formula.

Definition 20.2 ensures that if the input formula is satisfiable, a complete satis-
fiability algorithm finds a model for it. In the context of model enumeration, we
would expect that a complete enumeration algorithm finds a sequence of models,
if the formula is satisfiable.

11 Referred to as combined formula pair of F(X, Y) in our previous work [137].

158 paper 6 : on enumerating short projected models

Definition 20.5 (Completeness in model enumeration). A model enumeration algo-
rithm is complete, iff it is guaranteed to find a sequence containing all models of a satis-
fiable formula.

According to Definition 20.3, a strongly complete satisfiability algorithm finds
any, i. e., arbitrary, model. For model enumeration this would mean that a strongly
complete model enumeration algorithm finds any, i. e., arbitrary, sequence of mod-
els.

Definition 20.6 (Strong completeness in model enumeration). A model enumera-
tion algorithm is strongly complete, iff it is guaranteed to find any arbitrary sequence
containing all models of a satisfiable formula.

Note: Strong completeness can be obtained by restarting after the addition of a
blocking clause or according to some heuristic if no blocking clauses are used.

20.5 dual reasoning for model shrinking

In a previous work, we adopted dual reasoning for obtaining partial models [137].
Basically, we executed CDCL on the formula under consideration and its negation
simultaneously exploiting the fact that CDCL is biased towards detecting conflicts.
Our experiments showed that dual reasoning detects short models. However, pro-
cessing two formulae simultaneously turned out to be computationally expensive.

In another work [141] we propose, before taking a decision, to check whether
the current (partial) assignment logically entails the formula under consideration.
We present four flavors of the entailment check, some of which use a SAT oracle
and rely on dual reasoning.

The method introduced in this work, instead, exploits the effectiveness of dual
reasoning in detecting short partial models while avoiding both processing two
formulae simultaneously and oracle calls, which might be computationally expen-
sive. In essence, we let the enumerator find total models and shrink them by means
of dual reasoning.

Assume our task is to determine the models of a formula F(X, Y) over the set of
relevant variables X and irrelevant variables Y projected onto X, and let P(X, Y, S)
and N(X, Y, T) be CNF representations of F and ¬F, respectively, as introduced
in Section 20.3. Obviously, Equation 20.2–Equation 20.9 hold. Suppose standard
CDCL is executed on P. We denote with I the trail which ranges over variables
in X ∪ Y ∪ S ∪ T, where S and T are the Tseitin variables occurring in P and N,
respectively.

Now assume a total model I of P is found. A second SAT solver is incrementally
invoked on π(I, X ∪ Y) ∧ N. Since π(I, X ∪ Y) |= F and all variables in X ∪ Y are
assigned, due to Equation 20.6 a conflict in N occurs by propagating variables in T
only. If conflict analysis is carried out as described in Section 20.3.2, the learned
clause ¬I? contains only negated assumption literals.12 On the one hand, ¬I?

represents a cause for the conflict in N. On the other hand, due to Equation 20.5,
its negation I? represents a (partial) model of F. More precisely, I? represents
all total models of F projected onto X ∪ Y in which the variables in X ∪ Y not
occurring in I? may assume any truth value.

12 See also the work by Niemetz et al. [153].

20.6 dual encoding of blocking clauses 159

Example 20.6 (Model shrinking by dual reasoning). Let F = (a ∨ b) ∧ (c ∨ d) be a
propositional formula over the set of variables V = {a, b, c, d}. Without loss of general-
ization, suppose we want to enumerate the models of F projected onto V. Assume a total
model I = a b c d has been found. We call a second SAT solver on N ∧ I, where

N = (¬t1 ∨ ¬a)︸ ︷︷ ︸
C1

∧ (¬t1 ∨ ¬b)︸ ︷︷ ︸
C2

∧ (a ∨ b ∨ t1)︸ ︷︷ ︸
C3

∧

(¬t2 ∨ ¬c)︸ ︷︷ ︸
C4

∧ (¬t2 ∨ ¬d)︸ ︷︷ ︸
C6

∧ (c ∨ d ∨ t2)︸ ︷︷ ︸
C6

∧

(t1 ∨ t2)︸ ︷︷ ︸
C7

is the Tseitin encoding of ¬F = (¬a ∧ ¬b) ∨ (¬c ∧ ¬d) with Tseitin variables T =
{t1, t2}. The clauses C1 to C3 encode (t1 ↔ (¬a ∧ ¬b)), the clauses C4 to C6 en-
code (t2 ↔ (¬c ∧ ¬d)), and C7 encodes (t1 ∨ t2).

The literals on I are considered assumed variables, annotated by, e. g., aa, and I =
aa ba ca da. After propagating ¬t1 with reason C1 and ¬t2 with reason C4, the clause C7
becomes empty. The current trail is I′ = aa ba ca da ¬t1

C1 ¬t2
C4 . We resolve C7 with C4

to obtain the clause (t1 ∨¬c), which we then resolve with C1. The resolvent is (¬c∨¬a),
which contains only assumed literals which have no reason in I′, and thus can not be
resolved further. Below on the left hand side, the implication graph is visualized, and the
corresponding resolution steps are depicted on the right hand side.

a

b

c

d

¬t1

¬t2

κ

C1

C4

C7

C7

(t1 ∨ t2) (¬t2 ∨ ¬c)

(t1 ∨ ¬c) (¬t1 ∨ ¬a)

(¬c ∨ ¬a)

The negation of the clause (¬c ∨ ¬a), c a, is a countermodel of ¬F and hence a model
of F. In this case, it is also minimal w. r. t. the number of literals.

Note: The gain obtained by model shrinking is twofold. On the one hand, it en-
ables the (implicit) exploration of multiple models in one pass: e. g., in Exam-
ple 20.6, the model c a represents four total models, namely, a b c d, a b c¬d, a¬b c d,
and a¬b c¬d. On the other hand, short models result in short blocking clauses rul-
ing out a larger part of the search space, as mentioned earlier.

20.6 dual encoding of blocking clauses

Recall that we make use of Equation 20.4. If a blocking clause is added to P and N
is not updated accordingly, P and N do not represent the negation of each other
anymore, and Equation 20.4 ceases to hold. This might lead to multiple model
enumerations in the further search. This issue can be remediated by adding the
shrunken models disjunctively to N. To retain N in CNF and ensure Equation 20.4,
we propose the following dual encoding of the blocking clauses.

160 paper 6 : on enumerating short projected models

We denote with tseitin() the function which takes as argument an arbitrary
propositional formula and returns its Tseitin transformation. For the sake of read-
ability, we write F, P, and N as well as their indexed variants instead of F(X ∪
Y), P(X ∪Y ∪ S) and N(X ∪Y ∪ T). We define

P0 = tseitin(F) (20.7)

N0 = t0 ∧ tseitin(t0 ↔ ¬F). (20.8)

Let I1 be a trail such that I1 evaluates F to true, i. e., I1 ` F. A second SAT
solver SAT is called on π(I1, X∪Y)∧N0, and a conflict is obtained as argued above.
Assume SAT returns the assignment I?1 6 I1 such that SAT(π(I?1 , X ∪ Y), N0) =
UNSAT. Then ¬π(I?1 , X) is added to P0 obtaining P1 = P0 ∧ ¬π(I?1 , X). To en-
sure Equation 20.4, we define N1 = (t0 ∨ t1) ∧ tseitin(t0 ↔ ¬F) ∧ tseitin(t1 ↔
π(I?1 , X)), and so on.

At the nth step, we have

Pn = P0 ∧
n∧

i=1

¬π(I?i , X) (20.9)

Nn = (t0 ∨
n∨

i=1

ti) ∧ tseitin(t0 ↔ ¬F) ∧
n∧

i=1

tseitin(ti ↔ π(I?i , X)), (20.10)

where the red parts denote the additions to P0 and N0.
Let In+1 be a trail evaluating Pn to true, i. e., In+1 ` Pn. We invoke SAT on

π(In+1, X ∪Y) ∧ Nn leading to a conflict as described above. Assume SAT returns
I?n+1 6 In+1, such that SAT(π(I?n+1, X ∪ Y), Nn) = UNSAT. We add ¬π(I?n+1, X)
to Pn and update Nn accordingly. Now we have

Pn+1 = Pn ∧ ¬π(I?i+1, X) (20.11)

Nn+1 = Nn \ {(t0 ∨
n∨

i=1

ti)} ∧ (t0 ∨
n+1∨
i=1

ti) ∧ tseitin(tn+1 ↔ π(I?n+1, X)),

(20.12)

where Ii+1 ` Pi for 0 6 i 6 n
and I?i+1 6 Ii+1 is s. t. SAT(π(I?i+1, X ∪Y), Ni) = UNSAT.

Proposition 20.1. Let F(X, Y) be an arbitrary propositional formula over the relevant
variables X and the irrelevant variables Y. Let F and ¬F be encoded into CNFs P0 and N0,
respectively, according to Equation 20.7 and Equation 20.8. If for all models found blocking
clauses are added to P0 and N0 according to Equation 20.9 and Equation 20.10, then
only pairwise contradicting models are found, i. e., π(I?i , X) and π(I?j , X) are pairwise
contradicting for every i 6= j.

20.6 dual encoding of blocking clauses 161

Proof. By construction, Nn ≡ ¬F ∨ ∨n
i=1 π(I?, X ∪ Y), and π(I?, X ∪ Y) ∧ Nn ≡ 0.

Furthermore, π(I?, X ∪Y) ∧ ¬F ≡ 0. We have

0 ≡

π(I?n+1, X ∪Y) ∧ (¬F ∨
n∨

i=1

π(I?, X ∪Y)) =

(π(I?n+1, X ∪Y) ∧ ¬F) ∨ (π(I?n+1, X ∪Y) ∧
n∨

i=1

π(I?i , X ∪Y)) ≡

(π(I?n+1, X ∪Y) ∧
n∨

i=1

π(I?i , X ∪Y)) ≡

(π(I?n+1, X) ∧
n∨

i=1

π(I?i , X)),

since I?i contains only relevant variables. Hence, π(I?n+1, X) ∧ π(I?i , X) ≡ 0 for
i = 1, . . . , n.

Note: Equation 20.4 always holds:

∃S [Pi(X, Y, S)] ≡ ¬∃T [Ni(X, Y, T)] for all 0 6 i 6 n + 1.

Consequently, also Equation 20.5 and Equation 20.6 hold:

(¬∃ T [Ni(X, Y, T)|I]) |= (∃ S [Pi(X, Y, S)|I]) for all 0 6 i 6 n + 1

(∃ S [Pi(X, Y, S)|I]) |= (¬∃ T [Ni(X, Y, T)|I]) for all 0 6 i 6 n + 1

However, for our usage we may use the implication in the forward direction only
and write ti → π(I?i , X) and tn+1 → π(I?n+1, X) in Equation 20.10 and Equa-
tion 20.12 without compromising correctness for the following reason: The for-
mula Ni is called always under Ii+1 which falsifies all I?k for 0 6 k 6 i. Hence,
π(I?i , X)→ ti is always true.

Example 20.7 (Dual blocking clauses). We clarify the proposed encoding by a small
example and show that it prevents multiple model counts. Let our example be F = x1 ∨
(x2 ∧ x3) and assume we have found the model I?1 = x1. Then

P1 = (¬s1 ∨ x2) ∧ (¬s1 ∨ x3) ∧ (s1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ s1) ∧ (¬x1)

and

N1 = (¬t1 ∨ ¬x1)︸ ︷︷ ︸
C1

∧ (¬t1 ∨ ¬x2)︸ ︷︷ ︸
C2

∧ (t0 ∨ x1 ∨ x2)︸ ︷︷ ︸
C3

∧

(¬t2 ∨ ¬x1)︸ ︷︷ ︸
C4

∧ (¬t2 ∨ ¬x3)︸ ︷︷ ︸
C5

∧ (t2 ∨ x2 ∨ x3)︸ ︷︷ ︸
C6

∧

(t1 ∨ t2 ∨ t3)︸ ︷︷ ︸
C7

∧ (¬t3 ∨ x1)︸ ︷︷ ︸
C8

∧ (t3 ∨ ¬x1)︸ ︷︷ ︸
C9

where the blue parts denote the corresponding additions to P0 and N0. If now we find a
total model I2 = ¬x1 x2 x3, we obtain a conflict in N1 by unit propagating variables t1,
t3, and t3 only. The conflicting clause is (t1 ∨ t2 ∨ t3). The implication graph is depicted
below on the left hand side, the corresponding resolution steps for conflict analysis below
on the right hand side.

162 paper 6 : on enumerating short projected models

¬x1

x2

x3

¬t3

¬t1

¬t2

κ

C8

C2

C5

C7

C7

C7

(t1 ∨ t2 ∨ t3) (¬t2 ∨ ¬x3)

(t1 ∨ t3 ∨ ¬x3) (¬t1 ∨ ¬x2)

(t3 ∨ ¬x3 ∨ ¬x2) (¬t3 ∨ x1)

(¬x3 ∨ ¬x2 ∨ x1)

Conflict analysis returns the clause (¬x3 ∨ ¬x2 ∨ x1), which, after being added to P,
blocks the model ¬x1 x2 x3, which does not overlap with the previously found model x1.

20.7 projected model enumeration without repetition

We are given a propositional formula F(X, Y) over the set of irredundant vari-
ables X and the set of redundant variables Y, and our task is to enumerate its mod-
els projected onto the variables in X. Let P(X, Y, S) and N(X, Y, T) be a dual rep-
resentation of F according to Section 20.3. Obviously, Equation 20.2–Equation 20.6
hold.

In Figure 20.1, we consider the case with permanent learning of the blocking
clauses. Let the first SAT solver execute standard CDCL on P and let I denote
its trail. Obviously it finds only total models of P. Due to Equation 20.2, these
models satisfy F, too. Now assume a (total) model I of F is found. A second SAT
solver SAT is incrementally invoked on π(I, X ∪ Y) ∧ N with the aim to shrink I
obtaining I? as described in Section 20.5.

Let b denote the decision level of π(¬I?, X) and ` be the literal in π(¬I?, X)
with decision level b. If we now add the clause π(¬I?, X) to P and backtrack to
decision level b− 1, it becomes unit and in the next step ¬` is propagated. Notice
that π(¬I?, X) acts in P as a blocking clause and must not be deleted anytime
which might blow up P and slow down the first SAT solver. Moreover, the dual
encoding of the blocking clause according to Section 20.6 ensures Equation 20.4,
on which our method relies.

In Section 20.7.1, we present the main function EnumerateIrredundant. Unit prop-
agation (Section 20.7.2) and the schema for conflict analysis (Section 20.7.3) are the
same as in CDCL for SAT.

20.7.1 Main Algorithm

The function EnumerateIrredundant in Figure 20.1 describes the main algorithm.
(Black rows 1–18 and 27–28 represent standard CDCL returning a model if the
formula under consideration is satisfiable and the empty clause otherwise, blue
rows 19–26 the rest of the algorithm.)

Initially, the trail I is empty, the target DNF M is 0, and all variables are unas-
signed, i. e., assigned decision level ∞. Unit propagation is executed until either a
conflict occurs or all variables are assigned a value (line 7).

If a conflict occurs at decision level zero, the search space has been processed
exhaustively, and the enumeration terminates (lines 8–11). If a conflict occurs at a
decision level higher than zero, conflict analysis is executed (line 13).

If no conflict occurs and all variables are assigned, a total model has been
found (line 15). If no relevant decisions are left on the trail I, the search space
has been processed exhaustively, the found model is output and the search termi-

20.7 projected model enumeration without repetition 163

Input: formulae P(X, Y, S) and N(X, Y, T) s. t.
∃S [P(X, Y, S)] ≡ ¬∃T [N(X, Y, T)] ,

set of variables X ∪Y ∪ S ∪ T,
trails I and J

Output: DNF representation of π(P, X)

EnumerateIrredundant (P, N) // P0 = CNF (F)

// N0 = t0 ∧ CNF (t0 ↔ ¬F)

1 I := ε

2 δ[V 7→ ∞]

3 M := 0
4 i := 0
5 forever do
6 i := i + 1
7 C := PropagateUnits (P, I, δ)
8 if C 6= 0 then
9 c := δ(C)

10 if c = 0 then
11 return M
12 else
13 AnalyzeConflict (P, I, C, δ)
14 else
15 if all variables in X ∪Y ∪ S are assigned then
16 // I is total model of P and F

17 if var(decs(I)) ∩ X = ∅ then
18 return M ∨ π(I, X)

19 else
20 I? := SAT (N, π(I, X ∪Y))
21 // I? is model of π(F, X ∪Y) and conflict set of I w. r. t. N

22 P := P ∧ ¬π(decs(I?), X)

23 N := N \ {(t0 ∨
∨i−1

j=1 tj)}∧
(t0 ∨

∨i
j=1 tj) ∧ CNF (ti ↔ π(decs(I?), X))

24 M := M ∨ π(I?, X)

25 b := δ(¬π(I?, X))

26 Backtrack (I, b− 1)
27 else
28 Decide (I)

Figure 20.1: Irredundant model enumeration. The black lines describe CDCL returning
a model if one is found and the empty clause otherwise. The blue part rep-
resents the extension to model enumeration. A second SAT solver is called
incrementally on N assuming the literals on π(I, X ∪ Y). A conflict occurs
by unit propagation only, and π(I?, X ∪ Y) is a (partial) model of F. The is
encoded as a dual blocking clause, and P and N are updated accordingly.

164 paper 6 : on enumerating short projected models

PropagateUnits (F, I, δ)

1 while some C ∈ F is unit (`) under I do
2 I := I `
3 δ(`) := δ(I)
4 for all clauses D ∈ F containing ¬` do
5 if I(D) = 0 then return D
6 return 0

AnalyzeConflict (F, I, C, δ)

1 D := Learn (I, C)
2 F := F ∧ D
3 ` := literal in D at decision level δ(I)
4 j := δ(D \ {`})
5 for all literals k ∈ I with decision level > j do
6 assign k decision level ∞
7 remove k from I
8 I := I `
9 δ(`) := j

Figure 20.2: The function PropagateUnits implements unit propagation in F. The unit lit-
eral ` is assigned the decision level of I. If some clause D ∈ F containing the
complement of ` becomes falsified, PropagateUnits returns D. Otherwise it re-
turns the empty clause 0 indicating that no conflict has occurred. The function
AnalyzeConflict is called whenever a clause C ∈ F becomes empty under the
current assignment. It learns a clause D starting with the conflicting clause C.
The solver then backtracks to the second highest decision level j in D, upon
which D becomes unit with unit literal `, and propagates `.

nates (lines 17–18). If I contains a relevant decision, the found model is shrunken
(line 20) by means of dual reasoning as described in Section 20.5. It is blocked, and
the last relevant decision literal is flipped (lines 22–26). If no conflict occurs and
not all variables are assigned a value, a decision is taken (line 28).

20.7.2 Unit Propagation

Unit propagation is described by the function PropagateUnits in Figure 20.2. It
takes as input the formula F, the trail I, and the decision level function δ. If a
clause C ∈ F is unit under I, its unit literal ` is propagated, i. e., I is extended
by ` (line 2). Propagated literals are assigned at the current decision level (line 3)
as is usual in modern CDCL-based SAT solvers. If the resulting trail falsifies some
clause D ∈ F, this clause is returned (lines 4–5). Otherwise the function returns
the empty clause 0 (line 6).

20.8 formalizing projected irredundant model enumeration 165

20.7.3 Conflict Analysis

Conflict analysis is described by the function AnalyzeConflict in Figure 20.2. It
takes as input the formula F, the trail I, the conflicting clause C, and the decision
level function δ. A clause D is learned as described in Section 20.3.2 and added
to F (lines 1–2). The second highest decision level j in D is determined (lines 3–4),
and the enumerator backtracks (non-chronologically) to decision level j. Backtrack-
ing involves unassigning all literals with decision level higher than j (lines 5–7).
After backtracking, the clause D becomes unit with unit literal `, which is propa-
gated and assigned decision level j (lines 8–9).

20.8 formalizing projected irredundant model enumeration

In this section, we provide a formalization of our algorithm presented in Sec-
tion 20.7. Let F(X, Y) be a formula defined onto the set of relevant (input) vari-
ables X and the set of irrelevant (input) variables Y, and assume our task is to
enumerate its models projected onto X.

Our formalization works on a dual representation of F, given by P(X, Y, S)
and N(X, Y, T), as introduced in Section 20.3.5. So, P(X, Y, S) and N(X, Y, T) are
defined over the same sets of relevant variables X and irrelevant variables Y as
well as the disjoint sets of variables S and T, respectively, which are defined in
terms of the variables in X ∪ Y. Recall that Equation 20.2–Equation 20.6 hold. We
show the working of our calculus by means of an example, before we provide a
correctness proof.

20.8.1 Calculus

We formalize the algorithm presented in Section 20.7 as a state transition sys-
tem with transition relation ;EnumIrred. Non-terminal states are described by tu-
ples (P, N, M, I, δ). The third element, M, is a DSOP formula over variables in X.
The fourth element, I, denotes the trail defined over variables in X ∪ Y ∪ S ∪ T,
and δ denotes the decision level function. The initial state is (P0, N0, 0, ε, δ0),
where P0 and N0 denote the initial CNF representations of F and ¬F, respectively,
ε denotes the empty trail, and δ0 ≡ ∞. The terminal state is given by a DSOP
formula M, which is equivalent to the projection of P onto X. The transition rela-
tion ;EnumIrred is the union of transition relations ;R, where R is either End1, End0,
Unit, Back1, Back0, DecX, or DecYS. The rules are listed in Figure 20.3.

End1. All variables are assigned and no conflict in P occurred, hence the trail I is a
total model of P. It contains no relevant decision indicating that the relevant search
space has been processed exhaustively. The model projected onto X is added to M,
and the search terminates. It is sufficient to check for relevant decisions, since
flipping an irrelevant one would result in detecting redundant models projected
onto X. However, due to the addition of blocking clauses, a conflict would occur,
and checking for relevant decisions essentially saves work.

End0. A conflict at decision level zero has occurred indicating that the search
space has been processed exhaustively. The search terminates leaving M unaltered.
We need to make sure no decision is left on the trail, which in particular includes
the irrelevant ones. The reason is that after flipping any decision—in particular

166 paper 6 : on enumerating short projected models

End1: (P, N, M, I, δ) ;End1 M ∨m if P|I 6= 0 and

(X ∪Y ∪ S)− I = ∅ and var(decs(I)) ∩ X = ∅ and m def
= π(I, X)

End0: (P, N, M, I, δ) ;End0 M if exists C ∈ P with C|I = 0 and

δ(C) = 0

Unit: (P, N, M, I, δ) ;Unit (P, N, M, I `C, δ[` 7→ a]) if P|I 6= 0 and

exists C ∈ P with {`} = C|I and a def
= δ(I)

Back1: (P, N, M, I, δ) ;Back1 (P ∧ B, O, M ∨m, J `B, δ[K 7→ ∞][` 7→ b])

if (X ∪Y ∪ S)− I = ∅ and exists I? 6 π(I, X ∪Y) with

J K = I such that N ∧ I? `1 0 and m def
= π(I?, X) and

B def
= ¬decs(m) and b + 1 def

= δ(B) = δ(m) and ` ∈ B and

`|K = 0 and b = δ(B \ {`}) = δ(J) and O = tseitin(N ∨ ¬B)

Back0: (P, N, M, I, δ) ;Back0 (P ∧ Dr, N, M, J `D, δ[K 7→ ∞][` 7→ j])

if exists C ∈ P and exists D with J K = I and C|I = 0 and

δ(C) = δ(D) > 0 such that ` ∈ D and ¬` ∈ decs(I) and

¬`|K = 0 and P |= D and j def
= δ(D \ {`}) = δ(J)

DecX: (P, N, M, I, δ) ;DecX (P, N, M, I `d, δ[` 7→ d]) if P|I 6= 0 and

units(P|I) = ∅ and δ(`) = ∞ and d def
= δ(I) + 1 and var(`) ∈ X

DecYS: (P, N, M, I, δ) ;DecYS (P, N, M, I `d, δ[` 7→ d]) if P|I = 0 and

units(P|I) = ∅ and δ(`) = ∞ and d def
= δ(I) + 1 and

var(`) ∈ Y ∪ S and X− I = ∅

Figure 20.3: Rules for projected model enumeration without repetition. States are rep-
resented as tupels (P, N, M, I, δ). The formulae P(X, Y, S) and N(X, Y, T)
are a dual representation of the formula F(X.Y), whose models projected
onto X are sought. These models are recorded in the initially empty DNF M.
The last two elements, I and δ, denote the current trail and decision level
function, respectively. If a model is found or a conflict encountered and
the search space has been exhaustively processed, the search terminates
(rules End1 and End0). Otherwise, the model is shrunken and a dual block-
ing clause added (rules Back1) or conflict analysis executed followed by non-
chronological backtracking (rule Back0). If the residual of P under the cur-
rent trail I J contains a unit literal, this is propagated (rule Unit). If none of
the mentioned preconditions are met, a decision is taken. Relevant literals are
prioritized (rule DecX) over irrelevant and internal ones (rule DecYS).

also irrelevant and internal ones—the resulting trail might be extended to a model
of P.

Unit. No conflict in P occurred, and a clause in P is unit under I. Its unit literal `
is propagated and assigned the current decision level.

Back1. All variables are assigned and no conflict in P occurred, hence the trail I
is a total model of P. It is shrunken as described in Section 20.5 obtaining I?. The

20.8 formalizing projected irredundant model enumeration 167

projection of I? onto X, m, is added to M. The clause B consisting of the negated
decision literals of m is added as a blocking clause to P. Its negation ¬B is added
disjunctively to N, which is transformed back into CNF by means of the Tseitin
transformation. The solver backtracks to the second highest decision level in B and
propagates ` at the current decision level, i. e., basically flips the relevant decision
literal with highest decision level.

Back0. The current trail falsifies a clause in P at a decision level greater than zero
indicating that the search space has not yet been processed exhaustively. Conflict
analysis returns a clause D implied by P, which is added to P and marked as
redundant. The solver backtracks to the second highest decision level j in D. The
learned clause D becomes unit, and its unit literal ` is propagated at decision
level j. In contrast to End1, any decision literal need be flipped, which particularly
applies to irrelevant and internal decision literals.

DecX. No conflict has occurred, the residual of P under I contains no units, and
there is an unassigned relevant literal `. The current decision level is incremented
to d, ` is decided and assigned decision level d.

DecYS. No conflict has occurred, and the residual of P under I contains no units.
All relevant literals are assigned, and there is an unassigned irrelevant or internal
literal `. The current decision level is incremented to d, ` is decided and assigned
decision level d.

20.8.2 Example

The working of our calculus is shown by means of an example. Consider again
Example 20.1 and Example 20.5. We have

F = (a ∨ c)︸ ︷︷ ︸
C1

∧ (a ∨ ¬c)︸ ︷︷ ︸
C2

∧ (b ∨ d)︸ ︷︷ ︸
C3

∧ (b ∨ ¬d)︸ ︷︷ ︸
C4

and assume the set of relevant variables is X = {a, c} and the set of irrelevant
variables is Y = {b, d}. The formula F is already in CNF, therefore we define
P0 = F and accordingly S0 = ∅. For its negation

¬F = (¬a ∧ ¬c) ∨ (¬a ∧ c) ∨ (¬b ∧ ¬d) ∨ (¬b ∧ d)

we define

N0 = (¬t1 ∨ ¬a)︸ ︷︷ ︸
D1

∧ (¬t1 ∨ ¬c)︸ ︷︷ ︸
D2

∧ (a ∨ c ∨ t1)︸ ︷︷ ︸
D3

∧

(¬t2 ∨ ¬a)︸ ︷︷ ︸
D4

∧ (¬t2 ∨ c)︸ ︷︷ ︸
D5

∧ (a ∨ ¬c ∨ t2)︸ ︷︷ ︸
D6

∧

(¬t3 ∨ ¬b)︸ ︷︷ ︸
D7

∧ (¬t3 ∨ ¬d)︸ ︷︷ ︸
D8

∧ (b ∨ d ∨ t3)︸ ︷︷ ︸
D9

∧

(¬t4 ∨ ¬b)︸ ︷︷ ︸
D10

∧ (¬t4 ∨ d)︸ ︷︷ ︸
D11

∧ (b ∨ ¬d ∨ t4)︸ ︷︷ ︸
D12

∧

(t1 ∨ t2 ∨ t3 ∨ t4)︸ ︷︷ ︸
D13

168 paper 6 : on enumerating short projected models

Table 20.1: Execution trace for F = (a ∨ c) ∧ (a ∨ ¬c) ∧ (b ∨ d) ∧ (b ∨ ¬d) defined over the
set of relevant variables X = {a, c} and the set of irrelevant variables Y = {b, d}
(see also Example 20.1 and Example 20.5).

step rule I P|I N M

0 ε P0 N0 0

1 DecX ad (b ∨ d) ∧ (b ∨ ¬d) N0 0

2 DecX ad cd (b ∨ d) ∧ (b ∨ ¬d) N0 0

3 DecYS ad cd bd 1 N0 0

4 DecYS ad cd bd dd 1 N0 0

5 Back1 ¬aB1 (c) ∧ (¬c) ∧ (b ∨ d) ∧ (b ∨ ¬d) N1 a
6 Unit ¬aB1 cC1 () ∧ (b ∨ d) ∧ (b ∨ ¬b) N1 a
7 End0 a

with the set of internal variables T0 = {t1, t2, t3, t4}. Assume a lexicographic order-
ing of the input variables, i. e., a �lex b �lex c �lex d, and assume we choose the
decision variable according to this ordering. The execution steps are depicted in
Table 20.1.

Step 0: The initial state is given by the empty trail ε, the CNF formulae P0 and N0,
and the empty DNF formula 0.

Step 1: The formula P0 contains no units, and there are unassigned relevant vari-
ables. The preconditions of rule DecX are met, and decision a is taken.

Step 2: No conflict occurred, P0|I contains no units, and there are unassigned rele-
vant variables. The preconditions of rule DecX are met, and c is decided.

Step 3: No conflict occurred, P0|I contains no units. All relevant variables are
assigned, and there are unassigned irrelevant variables. The preconditions of rule
DecYS are met, and decision b is taken. Notice that I already satisfies P0, but the
solver is not able to detect this fact.

Step 4: Again, the preconditions of rule DecYS are met, and decision d is taken.

Step 5: No conflict occurred and all variables are assigned, hence I is a model
of P0. It is shrunken following the procedure described in Section 20.5.

We call a SAT solver incrementally on N0 ∧ I, i. e., assuming the literals on I. A
conflict in N0 occurs by propagation of variables in T0 only, and conflict analysis
provides us with the shrunken model a b of F. Below, the resulting implication
graph and trail are depicted:

a

c

b

d

¬t2

¬t1

¬t3

¬t4

κ

D1

D4

D7

D11

D13

D13

D13

D13

I = aa ca ba da ¬t1
D1 ¬t2

D4 ¬t3
D7 ¬t4

D10

20.8 formalizing projected irredundant model enumeration 169

The conflicting clause is D13. For conflict analysis, we resolve D13 with D10, the
resolvent with D7, followed by resolution with D4 and D1. The obtained clause
(¬b ∨ ¬a) contains only assumed literals. The assumptions c and d do not partic-
ipate in the conflict and therefore do not occur in the resulting clause. Below, the
resolution steps are visualized.

(t1 ∨ t2 ∨ t3 ∨ t4) (¬t4 ∨ ¬b)

(t1 ∨ t2 ∨ t3 ∨ ¬b) (¬t3 ∨ ¬b)

(t1 ∨ t2 ∨ ¬b) (¬t2 ∨ ¬a)

(t1 ∨ ¬b ∨ ¬a) (¬t1 ∨ ¬a)

(¬b ∨ ¬a)

The negation of (¬b ∨ ¬a) is a ∧ b, hence I? = a b 6 I. The first projected model
is m1 = π(I?, X) = a and accordingly M1 = M0 ∨ m1. Furthermore, we have
B1 = ¬decs(m1) = (¬a), and

P1 = P0 ∧ (¬a)︸︷︷︸
B1

and

N1 = N0 ∨ (a)︸︷︷︸
¬B1

= N0 \ {(
4∨

j=1

tj)} ∧ (
5∨

j=1

tj) ∧ (t5 ↔ a)

= (
12∧

i=1

Di) ∧ (¬t5 ∨ a)︸ ︷︷ ︸
D14

∧ (¬a ∨ t5)︸ ︷︷ ︸
D15

∧ (t1 ∨ t2 ∨ t3 ∨ t4 ∨ t5)︸ ︷︷ ︸
D16

where D14 ∧ D15 = (t5 ↔ a) is the Tseitin transformation of m1. The clause ¬B1 is
added disjunctively to N0. To retain N in CNF, ¬B1 is encoded as (t5 ↔ ¬B1), t5 is
added to D13 resulting in D16, and T1 = T0 ∪ {t5} = {t1, t2, t3, t4, t5} as described
in Section 20.6. The clause B1 acts in P as blocking clause. The solver backtracks
to decision level zero and propagates ¬a with reason B1.

Step 6: The formula P1|I contains two units, C1|I = (c) and C2|I = (¬c). The
literal c is propagated with reason C1.

Step 7: The trail falsifies C2, and the current decision level is zero. The precon-
ditions of rule End0 are met and the search terminates without altering M = a,
which represents exactly the models of F projected onto X, namely a c and a¬c.

20.8.3 Proofs

Our proofs are based on the ones provided for our work addressing chronologi-
cal CDCL for model counting [139], which in turn rely on the proof of correctness
we provided for chronological CDCL [138]. The method presented here mainly dif-
fers from the former in the following aspects: The total models found are shrunken
by means of dual reasoning. It adopts non-chronological CDCL instead of chrono-
logical CDCL and accordingly makes use of blocking clauses, which affects the
ordering of the literals on the trail. In fact, unlike in chronological CDCL, the liter-
als on the trail are ordered in ascending order with respect to their decision level,

170 paper 6 : on enumerating short projected models

InvDualPN: ∃ S [P(X, Y, S)] ≡ ¬∃ T [N(X, Y, T)]

InvDecs: δ(decs(I)) = {1, . . . , δ(I)}

InvImplIrred: ∀n ∈N . P ∧ decs6n(I) |= I6n

InvDSOP: M is a DSOP

Figure 20.4: Invariants for projected model enumeration without repetition.

which simplifies not only the rules but also the proofs. Projection in turn adds
complexity to some invariants. In some aspects our proofs are similar to or essen-
tially the same as those in our former proofs [138, 139]. However, they are fully
worked out to keep them self-contained.

In order to prove the correctness of our method, we make use of the invariants
listed in Figure 20.4. Invariant InvDualPN in essence is Equation 20.4. It ensures
that the shrunken model is again a model of P projected onto the input variables
stating that P and N projected onto the input variables X∪Y are each other’s nega-
tion. Intuitively, Invariant InvDualPN holds because the found models are blocked
in P and added to its negation N. Invariants InvDecs and InvImplIrred equal In-
variants (2) and (3) in our proofs of correctness of chronological CDCL [138] and
model counting by means of chronological CDCL [139]. Invariant InvImplIrred dif-
fers from the latter in that we need not consider the negation of the DNF M explic-
itly. The negation of M is exactly the conjunction of the blocking clauses associated
with the found models, and these are added to P. Invariant InvImplIrred is needed
to show that the literal propagated after backtracking is implied by the resulting
trail. Its reason is either a blocking clause (rule Back1) or a clause learned by
means of conflict analysis (rule Back0).

Our proof is split into several parts. We start by showing that the invariants
listed in Figure 20.4 hold in non-terminal states (Section 20.8.3.1). Then we prove
that our method always makes progress (Section 20.8.3.2), before showing that
our procedure terminates (Section 20.8.3.3). We conclude the proof by showing
that every total model is found exactly once and that all total models are detected,
i. e., that upon termination M ≡ π(P, X) holds (Section 20.8.3.4).

20.8.3.1 Invariants in Non-Terminal States

Proposition 20.2. Invariants InvDualPN, InvDecs, InvDSOP, and InvImplIrred hold in
non-terminal states.

Proof. The proof is carried out by induction over the number of rule applica-
tions. Assuming Invariants InvDualPN to InvImplIrred hold in a non-terminal state
(P, N, M, I, δ), we show that they are met after the transition to another non-
terminal state for all rules.

Unit
Invariant InvDualPN: Neither P nor N are altered, hence Invariant InvDualPN
holds after the application of rule Unit.
Invariant InvDecs: The trail I is extended by a literal `. We need to show that `
is not a decision literal. Only the case where a > 0 need be considered, since at
decision level zero all literals are propagated. There exists a clause C ∈ P s. t.C|I =

20.8 formalizing projected irredundant model enumeration 171

{`}. Now, a = δ(I), i. e., there is already a literal k 6= ` on I with δ(k) = a. From
this it follows that ` is not a decision literal. The decisions remain unchanged, and
Invariant InvDecs holds after applying rule Unit.
Invariant InvImplIrred: Due to C|I = {`}, we have P ∧ decs6n(I) |= ¬(C \ {`}).
Since C ∈ P, also P∧ decs6n(I) |= C. Modus ponens gives us P∧ decs6n(I) |= I6n.
Hence, P ∧ decs6n(I `) |= I `6n, and Invariant InvImplIrred holds after executing
rule Unit.
Invariant InvDSOP: Due to the premise, M is a DSOP. It is not altered by rule Unit
and after its application is therefore still a DSOP.

Back1
Invariant InvDualPN: We have ∃ S [P(X, Y, S)] ≡ ¬∃ T [N(X, Y, T)] and we need
to show ∃ S [(P∧ B)(X, Y, S)] ≡ ¬∃ T [O(X, Y, T)] where B = ¬decs(m) and B =
tseitin(N ∨¬B) and m = π(I?, X) is a model of P projected onto X. Since we have
that ∃ T [O(X, Y, T)] ≡ ∃ T [(N ∨¬B)(X, Y, T)], and ¬∃ T [(N ∨ ¬B)(X, Y, T)] ≡
∀ T [(¬N ∧ B)(X, Y, T)], we reformulate the claim as ∃ S [(P ∧ B)(X, Y, S)] ≡
∀ T [(¬N ∧ B)(X, Y, T)]. Together with ∃ S [P(X, Y, S)] ≡ ∀ T [¬[N(X, Y, T)] and
observing that B contains no variable in Y, the claim holds.
Invariant InvDecs: We show that the decisions remaining on the trail are unaf-
fected and that no new decision is taken, i. e., ` in the post state is not a deci-
sion. It is sufficient to consider the case where δ(I) > 0. Now, J = I6b by the
definition of J, and the decisions on J are not affected by rule Back1. We have
δ(B \ {`}) = b = δ(J) and δ(B) = b + 1. Since relevant decisions are prioritized,
also B = ¬decs6b+1(π(I, X)) = ¬decs6b+1(I). According to Invariant InvDecs
there exists exactly one decision literal for each decision level and in particular
in B. Since ` ∈ B, we have ¬` ∈ decs(I). Precisely, ¬` ∈ K, and ¬` is unassigned
upon backtracking. Due to the definition of B there exists a literal k ∈ B where
k 6= ` such that δ(k) = b, i. e., k ∈ J, hence k precedes ` on the resulting trail. By the
definition of the blocks on the trail, ` is not a decision literal. Since the decisions
on J are unaffected, as argued above, Invariant InvDecs is met.
Invariant InvImplIrred: We need to show that P ∧ decs6n(J `) |= (J `)6n for all n.
First notice that the decision levels of the literals in J do not change by applying
rule Back1. Only the decision level of the variable of ` is decremented from b + 1
to b. It also stops being a decision. Since δ(J `) = b, we can assume n 6 b. Ob-
serve that P ∧ decs6n(J `) ≡ P ∧ decs6n(J), since ` is not a decision in J ` and
I6b = J and thus I6n = J6n by definition. Now the induction hypothesis is ap-
plied and we get P ∧ decs6n(J `) |= I6n. Again using I6n = J6n this almost closes
the proof except that we are left to prove P ∧ decs6b(J `) |= ` as ` has decision
level b in J ` after applying the rule and thus ` disappears in the proof obligation
for n < b. To see this notice that P∧¬B |= I6b+1 using again the induction hypoth-
esis for n = b + 1, and recalling that relevant decisions are prioritized, i. e., I6b+1
contains only relevant decisions, and ¬B = decs(π(I?, X)) = decs6b+1(I). This
gives P ∧ ¬decs6b(J) ∧ ¬` |= I6b+1 and thus P ∧ ¬decs6b(J) ∧ ¬I6b+1 |= ` by
conditional contraposition. Therefore, Invariant InvImplIrred holds.
Invariant InvDSOP: We assume that M is a DSOP and need to show that M∨m is
also a DSOP. Due to the use of the dual blocking clause encoding, Proposition 20.1
holds, and invariant InvDSOP is met after executing Back1.

Back0
Invariant InvDualPN: We have ∃ S [P(X, Y, S)] ≡ ¬∃ T [N(X, Y, T)] , and we need
to show that ∃ S [(P ∧ D)(X, Y, S)] ≡ ¬∃ T [N(X, Y, T)] . By the premise, P |=

172 paper 6 : on enumerating short projected models

D, and hence P ∧ D ≡ P. Now ∃ S [(P ∧ D)(X, Y, S)] ≡ ∃ S [P(X, Y, S)] ≡
¬∃ T [N(X, Y, T)] , and Invariant InvDualPN holds.

Invariant InvDecs: We have J 6 I, hence the decisions on J remain unaltered. Now
we show that ` is not a decision literal. As in the proof for rule Unit, it is sufficient
to consider the case where j > 0. There exists a clause D where P |= D such
that δ(D) > 0 and a literal ` ∈ D for which `|K = 0 and ¬` ∈ K, hence ` is
unassigned during backtracking. Furthermore, there exists a literal k ∈ D where
k 6= ` and such that δ(k) = j which precedes ` on the trail J `. Therefore, following
the argument in rule Unit, the literal ` is not a decision literal. Since the decisions
remain unchanged, Invariant InvDecs holds after applying rule Back0.

Invariant InvImplIrred: Let n be arbitrary but fixed. Before executing rule Back0,
we have P ∧ decs6n(I) |= I6n. We need to show that P ∧ decs6n(J `) |= (J `)6n.
Now, I = J K and J < I, i. e., P ∧ decs6n(J) |= J6n. From j = δ(D \ {`}) = δ(J) we
get D|J = {`}. On the one hand, P ∧ decs6n(J) |= ¬(D \ {`}), and on the other
hand P ∧ decs6n(J) |= D. Therefore, by modus ponens, P ∧ decs6n(J) |= `. Since `
is not a decision literal, as shown above, P ∧ decs6n(J) ≡ P ∧ decs6n(J `) and
P ∧ decs6n(I `) |= I `, and Invariant InvImplIrred holds after applying rule Back0.

Invariant InvDSOP: The DSOP M remains unaltered, and InvDSOP still holds
after executing rule Back0.

DecX
Invariant InvDualPN: Both P and N remain unaltered, hence Invariant InvDualPN
still holds after executing rule DecX.

Invariant InvDecs: The literal ` is a decision literal by definition. It is assigned
decision level d = δ(I) + 1. Since ` ∈ decs(I`), we have δ(decs(I `)) = {1, . . . , d},
and Invariant InvDecs holds after applying rule DecX.

Invariant InvImplIrred: Le n be arbitrary but fixed. Since ` is a decision literal, we
have P ∧ decs6n(I `) ≡ P ∧ decs6n(I) ∧ ` |= I6n ∧ ` ≡ (I `6n. Hence, Invariant In-
vImplIrred holds after applying rule DecX.

Invariant InvDSOP: The DSOP M remains unaltered by rule DecX, hence invariant
InvDSOP still holds after its application.

DecYS.

The proofs of Invariants InvDualPN, InvDecs, InvDSOP, and InvDSOP are identi-
cal to the ones for rule DecX.

20.8.3.2 Progress

Our method can not get caught in an endless loop, as shown next.

Proposition 20.3. EnumerateIrredundant always makes progress, i. e., in every non-
terminal state a rule is applicable.

Proof. The proof is executed by induction over the number of rule applications.
We show that in any non-terminal state (P, N, M, I, δ) a rule is applicable.

Assume all variables are assigned and no conflict has occurred. If no relevant
decision is left on the trail I, rule End1 can be applied. Otherwise, we execute an
incremental SAT call SAT(N, π(I, X ∪ Y)). Since all input variables are assigned,
we obtain a conflict by propagating internal variables only. Conflict analysis gives
us the subsequence I? of π(I, X ∪Y) consisting of the literals involved in the con-
flict, which is a model of F. Since we are interested in the models of F projected

20.8 formalizing projected irredundant model enumeration 173

onto X, we choose B = ¬decs(π(I?, X)). Now, δ(B) = b + 1, and due to Invari-
ant InvDecs B contains exactly one decision literal ` such that δ(`) = b + 1 and
therefore δ(B \ {`}) = b. We choose J and K such that I = J K and b = δ(J) and in
particular `|K = 0. After backtracking to decision level b, we have I6b = J where
B|J = {`}. All preconditions of rule Back1 are met.

If instead a conflict has occurred, a clause C ∈ P exists such that C|I = 0.
If δ(C) = 0, rule End0 is applicable. Otherwise, by Invariant InvImplIrred we
have P ∧ decs6δ(I)(I) ≡ P ∧ decs6δ(I)(I) ∧ I6δ(I) |= I6δ(I). Since I(P) ≡ 0, also
P ∧ decs6δ(I)(I) ∧ I6δ(I) ≡ P ∧ decs6δ(I)(I) ≡ 0. If we choose D = ¬decs(I) we
obtain P ∧ ¬D ∧ I6δ(I) ≡ 0, thus P |= D. Clause D contains only decision literals
and δ(D) = δ(I). From Invariant InvDecs we know that D contains exactly one
decision literal for each decision level in {1, . . . , δ(I)}. We choose ` ∈ D such that
δ(`) = δ(I). Then the asserting level is given by j = δ(D \ {`}). Without loss
of generalization we assume the trail to be of the form I = J K where δ(J) = j.
After backtracking to decision level j, the trail is equal to J. Since D|J = {`}, all
conditions of rule Back0 hold.

If P|I 6∈ {0, 1}, there are unassigned variables in X ∪ Y ∪ S. If there exists a
clause C ∈ P where C|I = {`}, the preconditions of rule Unit are met. If instead
units(F|I) = ∅, there exists a literal ` with var(`) ∈ X ∪ Y ∪ S and δ(`) = ∞. If
not all relevant variables are assigned, the preconditions of rule DecX are satisfied.
Otherwise, rule DecYS is applicable.

All possible cases are covered by this argument. Hence, in every non-terminal
state a rule is applicable, i. e., EnumerateIrredundant always makes progress.

20.8.3.3 Termination

Proposition 20.4. EnumerateIrredundant terminates.

Proof. In our proof we follow the argument by Nieuwenhuis et al. [155] and Marić
and Janičić [124], or more precisely the one by Blanchette et al. [29].

We need to show that from the initial state (P, N, 0, ε, δ0) a final state M is
reached in a finite number of steps, i. e., no infinite sequence of rule applications
is generated. Otherwise stated, we need to prove that the relation ;EnumIrred is
well-founded. To this end, we define a well-founded relation �EnumIrred such that
any transition s ;EnumIrred s′ from a state s to a state s′ implies s �EnumIrred s′.

In accordance with Blanchette et al. [29] but adopting the notation introduced
by Fleury [78], we map states to lists. Using the abstract representation of the
assignment trail I by Nieuwenhuis et al. [155], we write

I = I0 `1 I1 `2 I2 . . . `m Im where {`1, . . . , `m} = decs(I). (20.13)

The state (P, N, M, I, δ) is then mapped to

[0, . . . , 0︸ ︷︷ ︸
|I0|

, 1, 0, . . . , 0︸ ︷︷ ︸
|I1|

, 1, 0, . . . , 0︸ ︷︷ ︸
|I2|

, 1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
|Im|

, 2, . . . , 2︸ ︷︷ ︸
|V|−|I|

] (20.14)

where V = X ∪ Y ∪ S. In this representation, the order of the literals on I is re-
flected. Propagated literals are denoted by 0, decisions are denoted by 1. Unas-
signed literals are represented by 2 and are moved to the end. The final state M is
represented by ε. The state containing the trail I in Equation 20.13 is mapped
to the list in Equation 20.14. The first |I0| entries represent the literals propa-
gated at decision level zero, the 1 at position |I0| + 1 represents the decision lit-
eral `1, and so on for all decision levels on I. The last |V| − |I| entries denote

174 paper 6 : on enumerating short projected models

[. . .]
End1ε

[0, . . . , 0, 2, . . . , 2]
End0ε

[. . . , 2, 2, . . . , 2]
Unit

[. . . , 0, 2, . . . , 2]

[. . . , 1, . . . , 1, . . . , 2, . . . , 2]
Back1

[. . . , 0, 2, , 2]
[. . . , 1, . . . , 1, . . . , 2, . . . , 2]

Back0
[. . . , 0, 2, , 2]

[. . . , 2, 2, . . . , 2]
DecX

[. . . , 1, 2, . . . , 2]
[. . . , 2, 2, . . . , 2]

DecYS
[. . . , 1, 2, . . . , 2]

Figure 20.5: Transitions of states mapped to lists according to Equation 20.14. The initial
state is depicted above the horizontal rule, the resulting state below. The two
end rules lead to the minimal element ε. Rule Unit replaces an unassigned
literal (denoted by 2) by a propagated one (denoted by 0) and leaves the rest
unchanged. Rules Back1 and Back0 replace a decision literal (denoted by 1)
by a propagated one. Finally, the two decision rules replace an unassigned
literal by a decision. Clearly, w. r. t. the lexicographic order, the states decrease
by a rule application.

the unassigned variables. Notice that we are not interested in the variable assign-
ment itself, but in its structure, i. e., the number of propagated literals per deci-
sion level and the number of unassigned variables. Furthermore, the states are
encoded into lists of the same length. This representation induces a lexicographic
order >lex on the states. We therefore define �EnumIrred as the restriction of >lex

to {[v1, . . . , v|V|] | vi ∈ {0, 1, 2} for 1 6 i 6 |V|}. Accordingly, we have that
s �EnumIrred s′, if s >lex s′.

In Figure 20.5, the state transitions for the rules are visualized. In this represen-
tation, the unspecified elements occurring prior to the first digit are not altered by
the application of the rule. We show that s �EnumIrred s′ for each rule.

End1. The state s′ is mapped to ε, which is the minimal element with respect
to >lex, hence s �EnumIrred s′ trivially holds. The representation of the state may
contain both 0’s and 1’s but no 2’s, since our algorithm detects only total models.13

Recall that the associated trail must not contain any relevant decision, which is not
reflected in the structure of the trail.

End0. The state s′ is mapped to ε, which is the minimal element with respect
to >lex, hence s �EnumIrred s′ trivially holds. The representation of the state may
contain both 0’s and 2’s but no 1’s, since any decision need be flipped.

Unit. An unassigned variable is propagated. Its representation changes from 2
to 0, and all elements preceding it remain unaffected. Due to 2 >lex 0, we also have
that s �EnumIrred s′.

Back1 / Back0. A decision literal, e. g., ¬` is flipped and propagated at a lower de-
cision level, let’s say d. The decision level d is extended by `, which is represented
by 0, and replaces the decision literal at decision level d + 1. All other literals at
decision level d + 1 and higher are unassigned and thus represented by 2. There-
fore, s �EnumIrred s′. Notice that, although different preconditions of the rules Back1
and Back0 apply and the two rules differ, the structure of their states is the same.

13 This restriction may be weakened in favor of finding partial models. In this section, we refer to
the rules introduced in Section 20.8.1 and discuss a generalization of our algorithm enabling the
detection of partial models further down.

20.8 formalizing projected irredundant model enumeration 175

DecX / DecYS. An unassigned variable is decided, i. e., in the representation, the
first occurrence of 2 is replaced by 1. The other elements remain unaltered, hence
s �EnumIrred s′. As for the backtracking rules, whether a relevant or irrelevant or
internal variable is decided, is irrelevant and not reflected in the mapping of the
state, as for rules Back1 and Back0.

We have shown that after any rule application the resulting state is smaller
than the preceding one with respect to the lexicographic order on which �EnumIrred

is based. This argument shows that �EnumIrred is well-founded, and that therefore
EnumerateIrredundant terminates.

20.8.3.4 Equivalence

The final state is given by a DSOP M such that M ≡ π(F, X). The proof is split
into several steps. We start by proving that, given a total model I of P, its subse-
quence I? returned by SAT (line 20 of EnumerateIrredundant in Figure 20.1) is a
(partial) model of π(P, X) and that any total model of P found during execution
either was already found or is found for the first time. Then we show that all mod-
els of P are found and that each model is found exactly once, before concluding
by proving that M ≡ π(F, X).

Proposition 20.5. Let I be a total model of P and I? = SAT(N, π(I, X ∪ Y)). Then I?

is a model of π(P, X).

Proof. All variables in X ∪ Y ∪ S are assigned, and P(X, Y, S) and N(X, Y, T) are
a dual representation of F(X, Y). Invariant InvDualPN holds. In particular it holds
for the values of the variables in X ∪Y∪ S set to their values in I, i. e., we have that
∃ S [P(X, Y, S)|I] ≡ ¬∃ T [N(X, Y, T)|I] , where only the unassigned variables in
(X ∪Y)− I are universally quantified. Since I is a total model of P, Invariant InvD-
ualPN can be rewritten as P(X, Y, S)|I ≡ ¬∃ T [N(X, Y, T)|I , and π(I, X ∪ Y) can
not be extended to a model of N. Since the variables in T are defined in terms
of variables in X ∪ Y, an incremental SAT call on N ∧ I yields a conflict in N
exclusively by propagating variables in T.

Exhaustive conflict analysis yields a clause D consisting of the negations of the
(assumed) literals in I involved in the conflict. Its negation is a countermodel
of π(N, X ∪ Y), which due to Equation 20.5 is a model of π(P, X ∪ Y). Obviously,
the same holds for the projection onto X, and π(¬D, X) |= π(P, X). Since I? =
π(¬D, X), we have I? |= π(P, X), and the claim holds.

Note: Proposition 20.5 corresponds to soundness according to Definition 20.4.

Proposition 20.6. A total model I of P is either

(i) contained in M or

(ii) subsumed by a model in M or

(iii) a model of P0 ∧
∧
i

Bi where Bi are the blocking clauses added to P0

Proof. All variables in X ∪ Y ∪ S are assigned, and I |= P. If I was already found
earlier, it was shrunken and the resulting model projected onto X to obtain I?,
which was then added to M (rule Back1 and line 24 in EnumerateIrredundant in
Figure 20.1). If all assumed variables participated in the conflict and furthermore

176 paper 6 : on enumerating short projected models

Y = S = ∅, π(I?, X ∪ Y) = π(I?, X) = I, and (i) holds. Otherwise, I? < I, and I?

subsumes I. Since I? ∈ M, in this case (ii) holds.
Suppose the model I is found for the first time. Since I |= P, also I |= C for all

clauses C ∈ P. This in particular holds for all blocking clauses which were added
to the original formula P = P0 (rule Back1 and line 22 in EnumerateIrredundant),
and (iii) holds.

Proposition 20.7. Every model is found.

Proof. According to Proposition 20.4, EnumerateIrredundant terminates. The final
state M is reached if the search space has been processed exhaustively. Hence, all
models have been found.

Note: Proposition 20.7 says that a sequence of all models of the formula is found.
It therefore corresponds to completeness according to Definition 20.5 and to strong
completeness according to Definition 20.6, if restarts are applied.

Proposition 20.8. Every model is found exactly once.

Proof. We recall Proposition 20.1 stating that only pairwise contradicting models
are detected. In essence, this says that every model is found exactly once.

Theorem 20.1 (Correctness). If (P, N, 0, ε, δ0) ;
∗
EnumIrred M, then

(i) M ≡ π(F, X)

(ii) Ci ∧ Cj ≡ 0 for Ci, Cj ∈ M and Ci 6= Cj

Proof. The cubes in M are exactly the I? computed from the total models of P.
These are models of π(P, X) (Proposition 20.5). Since by Proposition 20.7 all mod-
els are found, M ≡ π(P, X). But by Equation 20.2 models(∃Y, S . P(X, Y, S)) =
models(∃Y . F(X, Y)) holds, i. e.models(π(P, X)) = models(π(F, X)). Thus,M ≡
π(F, X), and (i) holds.

Due to Proposition 20.1, the found models are pairwise contradicting, and (ii)
holds as well. Notice that one could also use Proposition 20.8, since as its conse-
quence, only pairwise contradicting models are found.

20.8.4 Generalization to Partial Model Detection

EnumerateIrredundant only finds total models of P. In SAT solving, this makes
sense from an computational point of view, because checking whether a partial
assignment satisfies a formula is more expensive than extending it to a total one.
However, model enumeration is computationally more expensive than SAT solv-
ing, hence satisfiability checks, e. g., in the form of entailment checks [141], might
pay off. Notice that it still might make sense to shrink the models found. In this
section, we discuss the changes to be made to our presentation in order to support
the detection of partial models.

First, the satisfiability condition need be replaced. This affects “all variables
in X ∪ Y ∪ S are assigned” on line 15 of EnumerateIrredundant (Figure 20.1) and
“(X ∪Y ∪ S)− I = ∅” in rules End1 and Back1 in our calculus (Figure 20.3). These
conditions are replaced by “I is a model of P” and “I(P) = 1”, respectively.

Second, some proofs need slightly be adapted. In the proof of Proposition 20.3
we use the assumption that I is total to justify that a conflict in N|I is obtained by

20.9 conflict-driven clause learning for redundant all-sat 177

propagating only variables in T. Now Invariant InvDualPN ensures that a conflict
in N|I is obtained also if I is a partial assignment. However, it might be the case
that input variables might need be propagated or decided, and we might obtain
some I′ containing literals which do not occur on I. Defining I? = π(I′, var(I))
solves the issue, and the rest of the proof remains unchanged. Notice that this
change is reflected neither in EnumerateIrredundant nor in the calculus, since the
computation of I? is not specified. Adequate changes need be done in the wording
and in the proof of Proposition 20.5. The rest of the proof remains unaffected.

20.9 conflict-driven clause learning for redundant all-sat

Let F be a formula in CNF over a set of variables V, and suppose the current
trail I satisfies F. Let the last decision literal on I be ¬`. It is flipped and the
search continues. This corresponds to learning the negation of I and backtracking
chronologically, i. e., to the previous decision level, after which ¬I becomes unit
and its unit literal ` is propagated. The clause ¬I acts as a reason for `. If at a
later stage of the search, a conflict occurs, it is analyzed, and a clause blocking this
falsifying assignment is learned.

Conflict-driven clause learning (CDCL) is based on the assumption that the
reason of every literal which is not a decision literal is contained in the formula. If
blocking clauses are added to the input formula, this is indeed the case, and CDCL
for model enumeration does not differ from its SAT counterpart. However, this is
not the case anymore if no blocking clauses are used. The question now is how `
should be treated if its reason ¬I was not added to the formula.

We propose to consider ` as a propagated literal annotating it on the trail with
its reason ¬I but without adding ¬I to F. This ensures the working of conflict anal-
ysis. Notice that ¬I can not be used for unit propagation. Furthermore, any clause
learned in conflict analysis involving ¬I is logically entailed by F ∧ ¬I but not
necessarily by F, to which it is added. This is in contrast to CDCL for SAT, where
the clauses learned after a conflict are entailed by F. The idea is best conveyed by
a small example.

Example 20.8 (Conflict analysis for model enumeration). Consider the formula F
over the set of variables V = {a, b, c, d, e}:

F = (a ∨ b ∨ ¬c)︸ ︷︷ ︸
C1

∧ (¬b ∨ c)︸ ︷︷ ︸
C2

∧ (d ∨ ¬c ∨ e)︸ ︷︷ ︸
C3

∧ (d ∨ ¬c ∨ ¬e)︸ ︷︷ ︸
C4

Assume X = {a, b, c, d} and Y = {e}. Suppose we decide a and b, propagate c with
reason C2 and decide d followed by deciding e. The resulting trail I1 = ad bd cC2 dd ed is
a model of F. This model is blocked by B1 = (¬a ∨ ¬b ∨ ¬d) consisting of the negated
relevant decision literals on I1. Considering only the decisions ensures that B1 contains
exactly one literal per decision level and that after backtracking chronologically B1 becomes
unit. Recall that B1 is not added to F. The last decision literal is flipped with reason B1
and e is propagated with reason C3. But now C4 is falsified. The current trail is I2 =
ad bd cC2 ¬dB1 eC3 , which can also be visualized by the following implication graph:

178 paper 6 : on enumerating short projected models

a@1

b@2

¬d

c
e κ

B1

B1

C2

C3

C3

C4

C4

C4

The nodes on the left hand side having no incoming edge represent decisions and are
annotated by their decision level. The other nodes denote propagated literals whose reasons
label their incoming edges. The node κ represents a conflict, and the conflicting clause is
the one labeling its incoming edges.

The resolution steps for determining the clause representing the reason for the conflict
can either be read off the trail I2 in reverse assignment order or determined from the inci-
dent graph by following the arrows in reverse direction starting with κ. We first resolve
the conflicting clause C4 with the reason of e, C3, obtaining the resolvent (d∨¬c). Both d
and ¬c have the highest decision level 2, and we continue by resolving the resolvent with
B1 obtaining (¬c∨¬a∨ b), followed by resolution with C2 resulting in C5 = (¬a∨¬b),
which has only one literal at decision level 2. The resolution process stops, and C5 is added
to F. Notice that learning a clause containing one single literal at conflict level 2 requires
resolution with B1.

To lay the focus on the main topic, namely conflict analysis in the absence of
blocking clauses, in this section we consider neither model shrinking nor projec-
tion. However, the extension of the clause learning algorithm to support the two,
is straightforward.

20.10 projected redundant model enumeration

Now we turn our attention to the case where enumerating models multiple times
is permitted. This allows for refraining from adding blocking clauses to the for-
mula under consideration, since they might significantly slow down the enumer-
ator. This affects both our algorithm and our calculus for irredundant projected
model enumeration. Omitting the use of blocking clauses has a minor impact on
our algorithm and its formalization. For this reason, in this section we point out
the differences between the two methods.

20.10.1 Algorithm and Calculus

The only difference compared to EnumerateIrredundant consists in the fact that no
blocking clauses are added to P. However, they are remembered as annotations on
the trail in order to enable conflict analysis after finding a model. Our algorithm
EnumerateRedundant therefore is exactly the same as EnumerateIrredundant listed
in Figure 20.1 without lines 22–23. The annotation of flipped literals happens in
function Backtrack() in line 26.

Accordingly, our formalization consists of all rules of the calculus in Figure 20.3
but replacing rule Back1 by rule Back1red shown in Figure 20.6. Rule Back1red
differs from rule Back1 only in the fact that both P and N remain unaltered.

20.10 projected redundant model enumeration 179

Back1red: (P, N, M, I, δ) ;Back1red (P, N, M ∨m, J`B, δ[K 7→ ∞][` 7→ b])

if (X ∪Y ∪ S)− I = ∅ and exists I? 6 π(I, X ∪Y) with

JK = I such that N ∧ I? `1 0 and m def
= π(I?, X) and

B def
= ¬decs(m) and b + 1 def

= δ(B) = δ(m) and ` ∈ B and

`|K = 0 and b = δ(B \ {`}) = δ(J)

Back0red: (P, N, M, I, δ) ;Back0red (P ∧ Dr, N, M, J `D, δ[K 7→ ∞][` 7→ j])

if exists C ∈ P and exists D with J K = I and C|I = 0 and

δ(C) = δ(D) > 0 such that ` ∈ D and ¬` ∈ decs(I) and

¬`|K = 0 and P ∧ ¬M |= D and j def
= δ(D \ {`}) = δ(J)

Figure 20.6: Rules for backtracking after detection of a model in redundant model enu-
meration. The calculus for redundant projected model enumeration differs
from its irredundant counterpart only in the fact that no blocking clauses are
used. Hence, all rules in Figure 20.3 are maintained except for rules Back1
and Back0, which are replaced by rules Back1red and Back0red, respectively.

20.10.2 Example

Example 20.9 (Projected redundant model enumeration). Consider again Example 20.1
elaborated in detail in Section 20.8.2 for EnumerateIrredundant. We have

P = (a ∨ c)︸ ︷︷ ︸
C1

∧ (a ∨ ¬c)︸ ︷︷ ︸
C2

∧ (b ∨ d)︸ ︷︷ ︸
C3

∧ (b ∨ ¬d)︸ ︷︷ ︸
C4

and

N = (¬t1 ∨ ¬a)︸ ︷︷ ︸
D1

∧ (¬t1 ∨ ¬c)︸ ︷︷ ︸
D2

∧ (a ∨ c ∨ t1)︸ ︷︷ ︸
D3

∧

(¬t2 ∨ ¬a)︸ ︷︷ ︸
D4

∧ (¬t2 ∨ c)︸ ︷︷ ︸
D5

∧ (a ∨ ¬c ∨ t2)︸ ︷︷ ︸
D6

∧

(¬t3 ∨ ¬b)︸ ︷︷ ︸
D7

∧ (¬t3 ∨ ¬d)︸ ︷︷ ︸
D8

∧ (b ∨ d ∨ t3)︸ ︷︷ ︸
D9

∧

(¬t4 ∨ ¬b)︸ ︷︷ ︸
D10

∧ (¬t4 ∨ d)︸ ︷︷ ︸
D11

∧ (b ∨ ¬d ∨ t4)︸ ︷︷ ︸
D12

∧

(t1 ∨ t2 ∨ t3 ∨ t4)︸ ︷︷ ︸
D13

Suppose X = {a, b} and Y = {c, d}. The execution trail is depicted in Table 20.2.
Assume we decide a, b, c, and d (steps 1–4) obtaining the trail I1 = ad bd cd dd, which

is a model of P. Dual model shrinking occurs as in step 5 in the example elaborated in
Section 20.8.2, except that the assumed literals b and c occur in a different order, and the
same model a b is obtained. Notice that the clause B1 = (¬a ∨ ¬b) is not added to P.

After backtracking, we have P|I1 = (d) ∧ (¬d), and after propagating d (step 6), we
obtain a conflict. The current trail is I3 = ad ¬bB1 dC3 , and C4|I3 = (). Resolution of
the reasons on I3 in reverse assignment order is executed, starting with the conflicting

180 paper 6 : on enumerating short projected models

Table 20.2: Execution trace for F = (a ∨ c) ∧ (a ∨ ¬c) ∧ (b ∨ d) ∧ (b ∨ ¬d) defined over the
set of relevant variables X = {a, b} and the set of irrelevant variables Y = {c, d}
(see also Example 20.1).

step rule I P|I M

0 ε P 0

1 DecX ad (b ∨ d) ∧ (b ∨ ¬d) 0

2 DecX ad bd 1 0

3 DecYS ad bd cd 1 0

4 DecYS ad bd cd dd 1 0

5 Back1red ad ¬b(¬a∨¬b) (d) ∧ (¬d) a ∧ b
6 Unit ad ¬b(¬a∨¬b)dC3 0 a ∧ b
7 Back0 b(b) (a ∨ c) ∧ (a ∨ ¬c) a ∧ b
8 DecX b(b) ad 1 a ∧ b
9 DecYS b(b) ad cd 1 a ∧ b
10 DecYS b(b) ad cd dd 1 a ∧ b
11 Back1red b(b) ¬a(¬b∨¬a) (c) ∧ (¬c) (a ∧ b) ∨ (b ∧ a)
12 Unit b(b) ¬a(¬b∨¬a) cC1 0 (a ∧ b) ∨ (b ∧ a)
13 End0 (a ∧ b) ∨ (b ∧ a)

clause C4. We obtain C4 ⊗ C3 = (b) = C5, which contains exactly one literal at the max-
imum decision level, hence no further resolution steps are required. Since (b) is unit, the
enumerator backtracks to decision level 0 and propagates b with reason C5 (step 7). After
deciding a, c, and d, we find the same model b a c d as in step 4 (steps 8–10). Obviously,
model shrinking provides us with the same model b a, which is added to M, and the last
relevant decision is flipped (step 11). Now unit propagation leads to a conflict (step 12),
and since there are no decisions on the trail, the procedure stops (step 13). Now the cubes
in M, which represent the models of P, are not pairwise disjoint anymore. However, we
still have M ≡ π(P, X) ≡ π(F, X).

20.10.3 Proofs

Invariants InvDualPN and InvDecs listed in Figure 20.4 are applicable also for re-
dundant model enumeration, since they involve none of P and N. Invariant InvIm-
plIrred instead need be adapted since no blocking clauses are added to P, and
therefore it ceases to hold. Assume a model I has been found and shrunken
to m, and that the last relevant decision literal ` has been flipped. Since its rea-
son B = decs(¬m) is not added to P, from P ∧ decs(I) we can not infer I. Recall
that instead m is added to M, hence ¬M contains the reasons of all decision lit-
erals flipped after having found a model. A closer look reveals that this case is
analog to the one in our previous work [139]. In this work, we avoided the use
of blocking clauses by means of chronological backtracking. However, the basic
idea is the same, and we replace Invariant InvImplIrred by Invariant InvImplRed
listed in Figure 20.7. This is exactly Invariant (3) in our previous work on model

20.10 projected redundant model enumeration 181

InvDualPN: ∃ S [P(X, Y, S)] ≡ ¬∃ T [N(X, Y, T)]

InvDecs: δ(decs(I)) = {1, . . . , δ(I)}

InvImplRed: ∀n ∈N . P ∧ ¬M ∧ decs6n(I) |= I6n

Figure 20.7: Invariants for projected model enumeration with repetition. Notice that In-
variants InvDualPN and InvDecs are the same as for irredundant model enu-
meration, while due to the lack of blocking clauses, in invariant InvImplIrred
the models recorded in M need be considered.

counting [139], hence in our proof we use a similar argument. The invariants for
redundant model enumeration under projection are given in Figure 20.7.

20.10.3.1 Invariants in Non-Terminal States

Proposition 20.9 (Invariants in EnumerateRedundant). The Invariants InvDualPN,
InvDecs, and InvImplRed hold in non-terminal states.

Proof. The proof is carried out by induction over the number of rule applications.
Assuming Invariants InvDualPN, InvDecs, and InvImplRed hold in a non-terminal
state (P, N, M, I, δ), we show that they are met after the transition to another
non-terminal state for all rules.

Now rules End1, End0, Back0, DecX, and DecYS are the same as for Enumer-
ateIrredundant (Figure 20.3). In Section 20.8.3.1 we already proved that after the
execution of these rules Invariants InvDualPN and InvDecs still hold.

As for invariant InvImplRed, from (i) and (ii) in Proposition 20.6 and observing
that m 6 I, where I is a total model of P and m ∈ M its projection onto the
relevant variables, we can conclude that invariant InvImplRed holds as well. To see
this, remember that in invariant InvImplIrred we consider P = P0 ∧

∧
i Bi, where

the Bi are the clauses added to P0 blocking the models mi. But ¬Bi 6 mi, hence
invariant InvImplRed holds after the application of the rules Unit, Back0red, DecX,
and DecYS, and we are left to carry out the proof for rule Back1red.

Back1red

Invariant InvDualPN: Both P and N remain unaltered, therefore Invariant InvDu-
alPN holds after the application of Back1red.

Invariant InvDecs: The proof is analogous to the one for rule Back1.

Invariant InvImplRed: We need to show P ∧ ¬(M ∨m) ∧ decs6n(J`) |= (J`)6n for
all n. First notice that the decision levels of all the literals in J do not change while
applying the rule. Only the decision level of the variable of ` is decremented
from b + 1 to b. It also stops being a decision. Since δ(J`) = b, we can assume
n 6 b. Observe that P ∧ ¬(M ∨m) ∧ decs6n(J`) ≡ ¬m ∧ (P ∧ ¬M ∧ decs6n(I)),
since ` is not a decision in J` and I6b = J and I6n = J6n by definition. Now
the induction hypothesis is applied and we get P ∧ ¬(M ∨m) ∧ decs6n(J`) |= I6n.
Again using I6n = J6n this almost closes the proof except that we are left to prove
P ∧ ¬(M ∨m) ∧ decs6e(J`) |= ` as ` has decision level b in J` after applying the
rule and thus ` disappears in the proof obligation for n < b. To see this notice
that P ∧ ¬B |= I6b+1 using again the induction hypothesis for n = b + 1 and
recalling that ¬B = decs6b+1(I). This gives P∧¬decs6b(J)∧¬` |= I6b+1 and thus
P ∧ ¬decs6b(J) ∧ ¬I6b+1 |= ` by conditional contraposition.

182 paper 6 : on enumerating short projected models

20.10.3.2 Progress and Termination

The proofs that our method for redundant projected model enumeration always
makes progress and eventually terminates are the same as in Section 20.8.3.2 and
Section 20.8.3.3.

20.10.3.3 Equivalence

Some properties proved for the case of irredundant model enumeration cease to
hold if we allow enumerating redundant models. Specifically, Proposition 20.5,
and Proposition 20.7 hold, while Proposition 20.8 does not. Both (i) and (ii) of
Proposition 20.6 hold, while (iii) does not. In Theorem 20.1, (i) holds but (ii) does
not. Their proofs remain the same as for irredundant model enumeration in Sec-
tion 20.8.3.1.

20.10.4 Generalization

The same observations apply as for irredundant model enumeration presented in
Section 20.8.4.

20.11 conclusion

Model enumeration and projection, with and without repetition, is a key element
to several tasks. We have presented two methods for propositional model enu-
meration under projection. EnumerateIrredundant uses blocking clauses to avoid
enumerating models multiple times, while EnumerateRedundant is exempt from
blocking clauses and admits repetitions. Our CDCL-based model enumerators de-
tect total models and uses dual reasoning to shrink them.

To ensure correctness of the shrinking mechanism, we developed a dual encod-
ing of the blocking clauses. We provided a formalization and proof of correctness
of our blocking-based model enumeration approach and discussed a generaliza-
tion to the case where partial models are found. These partial models might not be
minimal, hence shrinking them still might make sense. Also, there is no guarantee
that the shrunken models are minimal as they depend on the order of the variable
assignments.

We presented a conflict-driven clause learning mechanism for redundant model
enumeration, since standard CDCL might fail in the absence of blocking clauses.
Basically, those clauses are remembered on the trail without being added to the
input formula. This prevents a blowup of the formula but also does not further
make use of these potentially short clauses, which in general propagate more ea-
gerly than long clauses.

We discussed the modifications of our blocking-based algorithm and calculus
to support redundant model enumeration and provided a correctness proof. Intu-
itively, shorter partial models representing non-disjoint sets of total models might
be found.

Our method does not guarantee that the shrunken model I? is minimal w. r. t.
the decision level b in line EnumerateIrredundant. However, finding short DSOPs

20.11 conclusion 183

is important in circuit design [136], and appropriate algorithms have been intro-
duced by, e. g., Minato [135]. While DSOP minimization has been proven to be
NP-complete [17], finding a smaller decision level b would already be advanta-
geous, since besides restricting the search space to be explored it generates shorter
models. To this end, we plan to adapt our dual shrinking algorithm to exploit the
Tseitin encoding as proposed by Iser et al. [101].

In the presence of multiple conflicting clauses, a related interesting question
might also be which one to choose as a starting point for conflict analysis with
the aim to backtrack as far as possible. This is not obvious unless all conflicts are
analyzed.

Determining shortest possible models makes our approach suitable for circuit
design. We are convinced that this work provides incentives not only for the
hardware-near community but also for the enumeration community.

21
D I S C U S S I O N O F PA P E R 6

The main contributions are highlighted in Section 21.1. The adaptation of strong
completeness in the absence of reasons for flipped decisions is clarified by an ex-
ample in Section 21.2. In this setting, a clause learnt by conflict analysis is entailed
not only by the input formula but also by the clauses representing the reasons of
flipped decision literals. We demonstrate this by an example in Section 21.3.

21.1 main contributions

Based on their counterparts in the context of SAT solving [197], soundness, com-
pleteness, and strong completeness are defined for propositional model enumera-
tion. We claim that our definitions are applicable also for methods detecting partial
models. While this can easily be seen for soundness and completeness, it is less
obvious for strong completeness, and we come back to strong completeness in the
context of partial model enumeration in Section 21.2.

A method for shortening total models is introduced. The total models are ob-
tained by standard CDCL with conflict-driven backjumping, and for shrinking
them we fall back on dual reasoning [137]. Basically, a second SAT solver is in-
voked incrementally on the negation of the formula and the total satisfying assign-
ment. A conflict is obtained by unit propagation, and conflict analysis is executed
to determine the assignments involved in the conflict. These assignments consti-
tute a partial model of the formula. Limiting the usage of dual reasoning to model
shrinking avoids the additional work introduced by processing the input formula
and its negation simultaneously observed in our earlier work (Chapter 11).

Non-chronological backtracking after finding a model requires the use of block-
ing clauses if repetitions must be avoided. Our dual model shrinking method
works on the negation of the current formula, which includes the blocking clauses
added so far. To block a model in the negated formula, it must be added with a
disjunction to it (see also Section 20.6). We present a dual blocking clause encod-
ing to maintain the negated formula in CNF. Dual blocking clauses enable us to
use blocking clauses in a dual setting solving an issue identified in our framework
for dual model counting (Section 11.4).

Blocking clauses provide the reasons of flipped decision literals (see also Chap-
ter 7). In redundant model enumeration, where models may be reported multiple
times, they are not required. Consequently, the conflict analysis procedure need
be adapted. We propose to annotate decision literals flipped after finding a model
with the corresponding blocking clause but without adding it to the formula. This
avoids issues during later conflict analysis due to missing reasons. However, since
these clauses are not added to the formula, they are not used for unit propagation.

185

186 discussion of paper 6

We present two algorithms and their formalization for model enumeration un-
der projection, both making use of dual model shrinking and non-chronological
backtracking after a model. The first framework addresses irredundant model enu-
meration. It returns a DSOP formula and hence a d-DNNF formula and can there-
fore readily be adapted to compute the model count of the input formula. Repeti-
tions are avoided by means of blocking clauses. The second framework addresses
redundant model enumeration. It is exempt from the use of blocking clauses and
therefore adopts our variant of conflict analysis mentioned above. Generalizations
to detecting and shrinking partial models are described.

The invariants met by our approaches were already introduced in our earlier
work presented in Section 14.5 and Section 16.5. We only want to notice that In-
variant InvDualPN corresponds to the duality property introduced in Section 11.3.
Finally, we provide proofs of correctness of our frameworks.

21.2 strong completeness in partial model enumeration

Strong completeness says that the model enumerator is guaranteed to find “any
arbitrary sequence containing all models of a satisfiable formula” (Definition 20.6).
Obviously, the adopted model enumeration algorithm has to be considered. As-
sume a formula F has two partial models m1 and m2, besides others, which repre-
sent two non-disjoint sets of total models of F. A model enumerator using block-
ing clauses, which is sometimes also said to be blocking, finds either m1 or m2
during one single execution but not both. Similarly, it is not guaranteed that a
non-blocking solver enumerates all partial models, although this might happen.
The point is that every total model of F is represented by the partial models re-
turned by the model enumerator, and thinking of partial models as sets of total
models, the enumerator—be it blocking or non-blocking—finds any sequence of
total models of F. Example 21.1 clarifies this idea.

Example 21.1 (Strong completeness in partial model enumeration). Consider the
formula F = (a ∨ c) ∧ (b ∨ d) defined over the set of variables V = {a, b, c, d}. Its to-
tal models are abcd, abc¬d, ab¬cd, ab¬c¬d, a¬bcd, a¬b¬cd, ¬abcd, ¬abc¬d, and
¬a¬bcd. Its partial models are ab, ad, bc, cd, abc, ab¬c, abd, ab¬d, a¬bd, acd, a¬cd,
¬abc, bcd, bc¬d, ¬acd, and ¬bcd. A non-blocking model enumerator might enumer-
ate ab and cd. If a blocking model enumerator finds ab, in the next model one of a and b
occurs negatively, hence it can not happen that it finds all partial models of F in one run.
However, in another run it might find a different set of partial models.

21.3 learnt clauses in redundant model enumeration

Clauses learnt by means of conflict analysis are obtained by a sequence of resolu-
tion steps. As such, they are entailed by the formula, i. e., all assignments satisfying
the formula also satisfy the learnt clauses, and this obviously includes all blocking
clauses added to the formula up to the point where the conflict occurred.

Conflict analysis assumes that the reason of every propagated literal occurs in
the formula. In our redundant model enumeration approach, we refrain from us-
ing blocking clauses but remember them in order to avoid issues with later conflict
analysis. Consequently, a clause obtained by conflict analysis is entailed by the
conjunction of the formula and all clauses ever used for annotating propagated
literals on the trail, as is shown by means of an example.

21.3 learnt clauses in redundant model enumeration 187

Example 21.2. Consider again the situation in Example 20.8, where

F(X, Y) = (a ∨ b ∨ ¬c)︸ ︷︷ ︸
C1

∧ (¬b ∨ c)︸ ︷︷ ︸
C2

∧ (d ∨ ¬c ∨ e)︸ ︷︷ ︸
C3

∧ (d ∨ ¬c ∨ ¬e)︸ ︷︷ ︸
C4

is defined over the set of relevant variables X = {a, b, c, d} and the set of irrelevant
variables Y = {e}. The total models of F projected onto X are abcd, a¬bcd, a¬b¬cd,
a¬b¬c¬d, ¬abcd, ¬a¬b¬cd, and ¬a¬b¬c¬d.

The trail I1 = ad bd cC2 dd ed satisfies F. The most recent relevant decision literal dd

is flipped and the corresponding clause B1 = (¬a ∨ ¬b ∨ ¬d) remembered as its reason.
After propagating e with reason C3, a conflict in C4 is obtained. For learning the con-
flict clause, first C4 is resolved with C3 followed by resolution with B1 and C2, and the
clause C5 = (¬a ∨ ¬b) is learnt (see Example 20.8 for a visualization of the implication
graph and resolution steps). The computation of C5 also involved resolution with B1, and
therefore F ∧ B1 |= C5, as can be seen by looking at the total models of F ∧ B1 projected
onto X: these are a¬bcd, a¬b¬cd, a¬b¬c¬d, ¬abcd, ¬a¬b¬cd, and ¬a¬b¬c¬d, and
all of them satisfy C5. The total models of F∧ B1 are exactly the total models of F projected
onto X without abcd, which falsifies C5.

We therefore aim at a version of CDCL taking into account blocking clauses for
conflict analysis but without adding them to the formula. These blocking clauses
are not used for unit propagation, and they are no candidates for conflicts, either.

Part VI

C O N C L U S I O N

22
D I S C U S S I O N

The aim of this thesis was to develop alternative methods to the component-based
approach representing the state of the art in propositional model counting or #SAT.
In the course of our work, we extended our investigations to All-SAT, the task of
enumerating the models of a propositional formula. Both tasks are computation-
ally expensive due to the size of the search space which—in contrast to SAT—need
be processed exhaustively. Pruning the search space was therefore a major concern,
and we focus on identifying short partial models. This contrasts component-based
model counting, since search space pruning in this paradigm is achieved by pro-
cessing individual components which are defined over a subset of the variables
occurring in the original formula. On the other hand, the total extensions of partial
models need not be checked explicitly, because they also satisfy the input formula.
Short partial models therefore bear the potential to considerably prune the search
space and thus reduce the amount of work.

Our first approach to model counting is dual and considers the formula under
consideration together with its negation. The idea to exploit duality in Boolean
logic is not new. In fact, prior to the work on dual reasoning in quantified Boolean
formula (QBF) solving, it has been adopted in the context of Boolean circuits [4, 91]
and satisfiability modulo theories (SMT) for computing interpolants for quantifier-
free equalities and uninterpreted functions [2]. Our approach differs from the dual
propagation method by Goultiaeva and Bacchus [91] in that it works on two for-
mulae instead of propagating primal and dual values on the same circuit. Amarù,
Gaillardon, Mishchenko, Ciesielski, and De Micheli [4] showed that a circuit repre-
senting a contradiction can be converted into a tautology and vice versa without
the use of exact logical negation. In contrast, we use the exact negation of the input
formula as its dual and conclude that the residual of the input formula F under a
trail I is a tautology, if a conflict in the residual of its negation ¬F under I occurs.

The motivation behind the work of Goultiaeva and Bacchus [91] was to enhance
the power of cube learning similarly to clause learning in CDCL. While they suc-
ceeded in this goal, it turned out that our dual approach introduced in Chapter 11

is not effective on CNF instances, since the additional work introduced by process-
ing two formulae could not be compensated by the detection of shorter partial
models. Similarly to their work, conflicts in N might allow for saving an expo-
nential amount of work. However, we can not take advantage of CDCL with non-
chronological backtracking after a conflict in N, since models might be missed,
and therefore our approach is not totally symmetric unlike the one adopted in
the QBF solver IQTest [204], which works on formulae in Combined Conjunctive-
Disjunctive Normal Form (CCDNF). These formulae consist of a CNF and a DNF
part, which are defined over different sets of variables. This representation allows

191

192 discussion

for a symmetric reasoning in clauses and cubes but can not readily be processed
by modern SAT-based model counters, since they mostly work on CNF formulae.

The main gain of dual reasoning in the context of model counting is that it
allows for detecting potentially short partial models of the input formula F by
exploiting the capability of CDCL-based SAT solvers to detect conflicts. An as-
signment falsifying ¬F is a (partial) model of F and allows for pruning the search
space without the need for executing satisfiability checks or implementing clause
watching mechanisms. Unit propagation in the negated formula is executed in
place of taking and flipping a decision saving further work. We crafted a formula
which does not easily decompose and showed that our dual model counter Du-
aliza outperforms the component-based state-of-the-art #SAT solvers on this in-
stance. The reason is a fundamental one, and we conjecture that this observation
holds for all formulae which can not easily be partitioned into subformulae over
disjoint sets of variables.

Further work is saved by combining CDCL with chronological backtracking, or
chronological CDCL. Our investigation and formalization of chronological CDCL
provided us with a deeper understanding of CDCL and chronological backtrack-
ing. Chronological CDCL was implemented in the SAT solver CaDiCaL, and ex-
periments showed that even if we always backtrack chronologically, the solver
performance does not degrade much. Since then, chronological CDCL became
a permanent part of CaDiCaL,1 which won the first place in the SAT track of
the SAT Race 2019

2 and second overall place, and kissat,3 which won the main
track of the SAT Competition 2020.4

Chronological CDCL bears the potential to be useful in model counting, and
we provide a formalization and proofs of a model counting approach based on
chronological CDCL. In this work, we focused on theory and did not provide an
implementation. Both model counting based on chronological CDCL and dual
model counting compute residuals in order to determine whether a partial assign-
ment I satisfies the input formula F, i. e., execute a syntactic satisfiability check.
However, in our dual approach a model of F might be detected which does not
satisfy the CNF representation of F but its projection onto the set of relevant vari-
ables. This is particularly interesting in the presence of auxiliary variables. The
models detected by model counting based on chronological CDCL instead always
satisfy the input formula, which is assumed to be in CNF, and since projection
is not supported, it may not contain auxiliary variables. Finally, we can not use
chronological CDCL to deal with a conflict in ¬F, as models of F might be lost.

Testing whether a partial trail I already satisfies a formula F before taking a
decision results in finding the shortest models possible in a non-dual setting. Con-
sider again the precise entailment condition ∀X∃Y [F|I] = 1, where F(X, Y) is a
propositional formula defined over the set of relevant variables X and the set of
irrelevant variables Y and I denotes a trail over variables in X ∪ Y. It enables the
detection of partial assignments represented by a trail I, whose total extensions
are models of F, while F|I 6= 1. Concretely, the semantic check F|I ≡ 1 is carried
out in contrast to the syntactic check F|I = 1, which is used in our previous work.
Therefore, shorter models are found than by model counting based on chronolog-
ical CDCL. These models are also shorter than the ones detected by dual model
counting, since they also relay on a syntactic check. Finally, blocking clauses used

1 https://github.com/arminbiere/cadical
2 http://sat-race-2019.ciirc.cvut.cz/
3 https://github.com/arminbiere/kissat
4 https://satcompetition.github.io/2020/

https://github.com/arminbiere/cadical
http://sat-race-2019.ciirc.cvut.cz/
https://github.com/arminbiere/kissat
https://satcompetition.github.io/2020/

discussion 193

in combination with logical entailment tests will be shorter and therefore propa-
gate more easily and prune larger portions of the search space.

Our last approach consists in shrinking total models using dual reasoning. It is
not clear whether this leads to find shorter models than by our dual framework.
However, since the satisfiability check is syntactic, testing for logical entailment
before taking a decision might give us shorter models. The overhead introduced
by shrinking total models will be reduced compared to our dual methods, since
only one formula is processed at once. However, the third flavor of our entailment
check involves a check for unsatisfiability, while dual model shrinking is known
to lead to a conflict, and hence the latter we assume the latter to be less expen-
sive unless a great number of blocking clauses is added, since they slow down
unit propagation. Our dual blocking clause encoding enables their use in a dual
setting, and its computation after finding a model is not too expensive under a
theoretical aspect. In the case of redundant model enumeration their computation
is obsolete, and the negative impact on solver performance due to a blowup of the
input formula and its negation is avoided. Allowing repetitions might result in
finding shorter partial models. This contrasts our observation that the longer the
enumerator or counter runs the longer the enumerated models, e. g., in our dual
counting framework. Finally, the conflict analysis variant proposed in the context
of model enumeration exempt from blocking clauses prevents the solver to use
them for unit propagation. It is not clear, however, whether this drawback can be
made up by the gain obtained by refraining from the addition of blocking clauses.

Our tool DualCountPro allows for systematically trying our different variants
of our framework and for identifying features which are not needed or which
need always be assigned 1. As an example, we would never allow to split on dual
variables, hence the feature D_T could just be omitted or assigned permanently 0.

23
S U M M A RY

We have presented various approaches for counting or enumerating the models
of a propositional formula with or without repetitions, some of which support
projection. In the following, we are going to focus on our contributions in the fields
of SAT solving and #SAT and All-SAT. As far as model detection is concerned,
we consider model counting and model enumeration related, and the techniques
we have presented are adoptable in either of the two. Our contributions to #SAT
and All-SAT are therefore summarized in the same paragraph.

contributions to propositional satisfiability. We have presented a
formalization of chronological CDCL, which combines CDCL and chronological
backtracking. Their combination is challenging, since various invariants consid-
ered crucial to CDCL cease to hold. Our formalization and proof of correctness is
a step towards a deeper understanding of the impact of chronological backtrack-
ing on the working of a CDCL-based SAT solver. We provide an implementation
of chronological CDCL in CaDiCaL. Our experimental results motivated Armin
Biere to make chronological CDCL a permanent part of CaDiCaL and Kissat.

contributions to model counting and enumeration. We have de-
veloped various methods for detecting short partial models. Short models facili-
tate the pruning of a larger portion of the search space, and the corresponding
blocking clauses propagate more easily. Our dual model framework considers the
input formula and its negation and records any assignment either satisfying the
formula or falsifying its negation. Due to the bias of SAT solvers towards find-
ing conflict, the latter might happen earlier. Our tool Dualiza outperforms the
component-based #SAT solver sharpSAT by orders of magnitude on a crafted for-
mula which does not easily decompose. However, we conjecture that the reason is
fundamental and that this behavior can be observed for all instances which do not
decompose easily. We further propose to check whether the current partial assign-
ment already satisfies the input formula before taking a decision. This method
might result in finding ever shorter models, as the precise entailment check is a
semantic one, in contrast to the syntactic check in our dual framework. To cap-
ture cases where a cheaper test is sufficient, we introduce four entailment tests
of different strengths and computational costs. Alternatively, total models can be
shrunken by dual reasoning. This method is computationally less expensive than
our dual model counting approach or the execution of entailment tests while tak-
ing advantage of the strengths of dual reasoning.

195

24
F U T U R E W O R K

In this thesis, different approaches to detecting partial models have been devel-
oped. It would be interesting to investigate combinations of those. As an exam-
ple, dual blocking clauses should be added to our dual model counting frame-
work. This would allow for using dual reasoning in combination with blocking
clauses. Along this line, it might be interesting to determine conditions for using
flipping and discounting with blocking clauses. The combination of logical entail-
ment checks and blocking clauses is another combination worth exploring, as well
as dual reasoning with chronological CDCL. The latter would reduce the negative
impact on solver performance by the use of blocking clauses.

A fundamental question is when to use which entailment test in partial model
enumeration. Choosing the right test as early as possible would save redundant
work introduced by running superfluous entailment tests. Similarly, by examining
the input formula, one might be able to detect when its models are more efficiently
counted by using only its negation, as in our example where the formula consists
of one single clause. To our best knowledge, a truly symmetric treatment of satis-
fying and falsifying assignment was not achieved yet. Dual reasoning might be a
first step towards a symmetric treatment of models and counter-models.

Understanding the reasons for the different performance of the two versions of
CaDiCaL reported in Table 15.1 could provide us with a deeper understanding
of the working of CaDiCaL and maybe of SAT solvers in general, or with the
impact of formula features on SAT solvers.

Finally, benchmarks for model counting or enumeration stemming from practi-
cal applications are needed. We are particularly interested in benchmarks which
do not decompose easily. The benchmarks available from the SAT competitions
do decompose, and as we have seen, Dualiza is not effective on these with-
out projection. Extending our frameworks and Dualiza in particular to support
component-based reasoning is an interesting topic for future work. It is an open
question, however, whether all relevant instances do decompose or whether those
which do not simply did not make it into the SAT competition. An answer to
this question also influences the future research direction in propositional model
counting and enumeration.

Our tool DualCountPro is not yet finished. Some features are still missing,
such as clause learning. Furthermore, it will be a valuable tool to check future
additions to our framework, such as support for component-based reasoning.

197

B I B L I O G R A P H Y

[1] Dimitris Achlioptas and PanosTheodoropoulos. “ProbabilisticModelCount-
ing with Short XORs.” In: Theory and Applications of Satisfiability Testing –
SAT 2017 – 20th International Conference, Melbourne, VIC, Australia, August
28–September 1, 2017, Proceedings. Ed. by Serge Gaspers and Toby Walsh.
Vol. 10491. Lecture Notes in Computer Science. Springer, 2017, pp. 3–19.
doi: 10.1007/978-3-319-66263-3_1.

[2] Leonardo Alt, Antti Eero Johannes Hyvärinen, Sepideh Asadi, and Natasha
Sharygina. “Duality-based interpolation for quantifier-free equalities and
uninterpreted functions.” In: 2017 Formal Methods in Computer Aided Design,
FMCAD 2017, Vienna, Austria, October 2–6, 2017. Ed. by Daryl Stewart and
Georg Weissenbacher. IEEE, 2017, pp. 39–46. doi: 10.23919/FMCAD.2017.8
102239.

[3] Antoine Amarilli, Florent Capelli, Mikaël Monet, and Pierre Senellart. “Con-
necting Knowledge Compilation Classes and Width Parameters.” In: The-
ory Comput. Syst. 64.5 (2020), pp. 861–914. doi: 10.1007/s00224-019-0993
0-2.

[4] Luca Gaetano Amarù, Pierre-Emmanuel Gaillardon, Alan Mishchenko, Ma-
ciej J. Ciesielski, and Giovanni De Micheli. “Exploiting Circuit Duality to
Speed up SAT.” In: 2015 IEEE Computer Society Annual Symposium on VLSI,
ISVLSI 2015, Montpellier, France, July 8–10, 2015. IEEE Computer Society,
2015, pp. 101–106. doi: 10.1109/ISVLSI.2015.18.

[5] Carlos Ansótegui, Maria Luisa Bonet, Jesús Giráldez-Cru, and Jordi Levy.
“Structure features for SAT instances classification.” In: Journal of Applied
Logic 23 (2017), pp. 27–39. doi: 10.1016/j.jal.2016.11.004.

[6] Carlos Ansótegui, Maria Luisa Bonet, Jesús Giráldez-Cru, Jordi Levy, and
Laurent Simon. “Community Structure in Industrial SAT Instances.” In:
Journal of Artificial Intelligence Research (JAIR) 66 (2019), pp. 443–472. doi:
10.1613/jair.1.11741.

[7] Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. “The Community
Structure of SAT Formulas.” In: Theory and Applications of Satisfiability Test-
ing – SAT 2012 – 15th International Conference, Trento, Italy, June 17–20, 2012.
Proceedings. Ed. by Alessandro Cimatti and Roberto Sebastiani. Vol. 7317.
Lecture Notes in Computer Science. Springer, 2012, pp. 410–423. doi: 10.1
007/978-3-642-31612-8_31.

[8] Cyrille Artho, Armin Biere, and Martina Seidl. “Model-Based Testing for
Verification Back-Ends.” In: Tests and Proofs – 7th International Conference,
TAP@STAF 2013, Budapest, Hungary, June 16–20, 2013. Proceedings. Ed. by
Margus Veanes and Luca Viganò. Vol. 7942. Lecture Notes in Computer
Science. Springer, 2013, pp. 39–55. doi: 10.1007/978-3-642-38916-0_3.

199

https://doi.org/10.1007/978-3-319-66263-3_1
https://doi.org/10.23919/FMCAD.2017.8102239
https://doi.org/10.23919/FMCAD.2017.8102239
https://doi.org/10.1007/s00224-019-09930-2
https://doi.org/10.1007/s00224-019-09930-2
https://doi.org/10.1109/ISVLSI.2015.18
https://doi.org/10.1016/j.jal.2016.11.004
https://doi.org/10.1613/jair.1.11741
https://doi.org/10.1007/978-3-642-31612-8_31
https://doi.org/10.1007/978-3-642-31612-8_31
https://doi.org/10.1007/978-3-642-38916-0_3

200 bibliography

[9] Gilles Audemard and Laurent Simon. “Refining Restarts Strategies for SAT
and UNSAT.” In: Principles and Practice of Constraint Programming – 18th In-
ternational Conference, CP 2012, Québec City, QC, Canada, October 8–12, 2012.
Proceedings. Ed. by Michela Milano. Vol. 7514. Lecture Notes in Computer
Science. Springer, 2012, pp. 118–126. doi: 10.1007/978-3-642-33558-7_11.

[10] Rehan Abdul Aziz, Geoffrey Chu, Christian J. Muise, and Peter J. Stuckey.
“#∃SAT: Projected Model Counting.” In: Theory and Applications of Satis-
fiability Testing – SAT 2015 – 18th International Conference, Austin, TX, USA,
September 24–27, 2015, Proceedings. Ed. by Marijn Heule and Sean A. Weaver.
Vol. 9340. Lecture Notes in Computer Science. Springer, 2015, pp. 121–137.
doi: 10.1007/978-3-319-24318-4_10.

[11] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. “Algorithms and
Complexity Results for #SAT and Bayesian Inference.” In: 44th Symposium
on Foundations of Computer Science (FOCS) 2003), 11–14 October 2003, Cam-
bridge, MA, USA, Proceedings. IEEE Computer Society, 2003, pp. 340–351.
doi: 10.1109/SFCS.2003.1238208.

[12] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. “DPLL with Caching:
A new algorithm for #SAT and Bayesian Inference.” In: Electronic Collo-
quium on Computational Complexity (ECCC) 10.003 (2003). url: http://eccc.
hpi-web.de/eccc-reports/2003/TR03-003/index.html.

[13] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. “Solving #SAT and
Bayesian Inference with Backtracking Search.” In: Journal of Artificial Intelli-
gence Research (JAIR) 34 (2009), pp. 391–442. doi: 10.1613/jair.2648.

[14] Fahiem Bacchus and Jonathan Winter. “Effective Preprocessing with Hyper-
Resolution and Equality Reduction.” In: Theory and Applications of Satisfi-
ability Testing, 6th International Conference, SAT 2003. Santa Margherita Lig-
ure, Italy, May 5–8, 2003 Selected Revised Papers. Ed. by Enrico Giunchiglia
and Armando Tacchella. Vol. 2919. Lecture Notes in Computer Science.
Springer, 2003, pp. 341–355. doi: 10.1007/978-3-540-24605-3_26.

[15] Roberto J. Bayardo Jr. and Joseph Daniel Pehoushek. “Counting Models
Using Connected Components.” In: Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on on Innovative Ap-
plications of Artificial Intelligence, July 30–August 3, 2000, Austin, Texas, USA.
Ed. by Henry A. Kautz and Bruce W. Porter. AAAI Press / The MIT Press,
2000, pp. 157–162. url: http://www.aaai.org/Library/AAAI/2000/aaai0
0-024.php.

[16] Paul Beame and Vincent Liew. “New Limits for Knowledge Compilation
and Applications to Exact Model Counting.” In: Proceedings of the Thirty-
First Conference on Uncertainty in Artificial Intelligence, UAI 2015, July 12–16,
2015, Amsterdam, The Netherlands. Ed. by Marina Meila and Tom Heskes.
AUAI Press, 2015, pp. 131–140. url: http://auai.org/uai2015/proceedi
ngs/papers/111.pdf.

[17] Anna Bernasconi, Valentina Ciriani, FabrizioLuccio, and LindaPagli. “Com-
pact DSOP and Partial DSOP Forms.” In: Theory of Computing Systems 53.4
(2013), pp. 583–608. doi: 10.1007/s00224-013-9447-2.

[18] Armin Biere. The AIGER And-Inverter Graph (AIG) Format Version 20071012.
Tech. rep. 07/01. Altenbergerstr. 69, 4040 Linz, Austria: Institute for Formal
Models and Verification, Johannes Kepler University, 2007.

https://doi.org/10.1007/978-3-642-33558-7_11
https://doi.org/10.1007/978-3-319-24318-4_10
https://doi.org/10.1109/SFCS.2003.1238208
http://eccc.hpi-web.de/eccc-reports/2003/TR03-003/index.html
http://eccc.hpi-web.de/eccc-reports/2003/TR03-003/index.html
https://doi.org/10.1613/jair.2648
https://doi.org/10.1007/978-3-540-24605-3_26
http://www.aaai.org/Library/AAAI/2000/aaai00-024.php
http://www.aaai.org/Library/AAAI/2000/aaai00-024.php
http://auai.org/uai2015/proceedings/papers/111.pdf
http://auai.org/uai2015/proceedings/papers/111.pdf
https://doi.org/10.1007/s00224-013-9447-2

bibliography 201

[19] Armin Biere. “CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT En-
tering the SAT Competition 2018.” In: Proceedings of SAT Competition 2018:
Solver and Benchmark Descriptions. Ed. by Marijn Heule, Matti Järvisalo, and
Martin Suda. Vol. B-2018-1. Department of Computer Science Series of Pub-
lications B. Department of Computer Science, University of Helsinki, 2018,
pp. 13–14. url: https://helda.helsinki.fi/handle/10138/237063.

[20] Armin Biere. “CaDiCaL at the SAT Race 2019.” In: Proceedings of SAT Race
2019 : Solver and Benchmark Descriptions. Ed. by Marijn J.H. Heule Heule,
Matti Järvisalo, and Martin Suda. Vol. B-2019-1. Department of Computer
Science Report Series B. Department of Computer Science, University of
Helsinki, 2019, pp. 8–9. url: https://helda.helsinki.fi/handle/10138
/306988.

[21] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
“Symbolic Model Checking without BDDs.” In: Tools and Algorithms for Con-
struction and Analysis of Systems, 5th International Conference, TACAS ’99, Held
as Part of the European Joint Conferences on the Theory and Practice of Soft-
ware, ETAPS’99, Amsterdam, The Netherlands, March 22–28, 1999, Proceedings.
Ed. by Rance Cleaveland. Vol. 1579. Lecture Notes in Computer Science.
Springer, 1999, pp. 193–207. doi: 10.1007/3-540-49059-0_14.

[22] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximilian Heisinger.
“CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling Entering the SAT
Competition 2020.” In: Proceedings of SAT Competition 2020 : Solver and
Benchmark Descriptions. Ed. by Tomás̆ Balyo, Nils Froleyks, Marijn Heule,
Markus Iser, Matti Järvisalo, and Martin Suda. Vol. B-2020-1. Department
of Computer Science Report Series B. Department of Computer Science,
University of Helsinki, 2019, pp. 50–52. url: https://helda.helsinki.fi/
handle/10138/318450.

[23] Armin Biere, Mathias Fleury, and Maximilian Heisinger. “CaDiCaL, Kissat,
Paracooba Entering the SAT Competition 2021.” In: Proceedings of SAT
Competition 2021 : Solver and Benchmark Descriptions. Ed. by Tomás̆ Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda.
Vol. B-2021-1. Department of Computer Science Report Series B. Depart-
ment of Computer Science, University of Helsinki, 2019, pp. 10–13. url:
https://helda.helsinki.fi/handle/10138/333647.

[24] Armin Biere, Steffen Hölldobler, and Sibylle Möhle. “An Abstract Dual Pro-
positional Model Counter.” In: YSIP2 – Proceedings of the Second Young Scien-
tist’s International Workshop on Trends in Information Processing, Dombai, Rus-
sian Federation, May 16–20, 2017. Ed. by Steffen Hölldobler, Andrey Malikov,
and Christoph Wernhard. Vol. 1837. CEUR Workshop Proceedings. CEUR-
WS.org, 2017, pp. 17–26. url: http://ceur-ws.org/Vol-1837/paper5.pdf.

[25] Armin Biere, Matti Järvisalo, and Benjamin Kiesl. “Preprocessing in SAT
Solving.” In: Handbook of Satisfiability – Second Edition. Ed. by Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh. Vol. 336. Frontiers in
Artificial Intelligence and Applications. IOS Press, 2021, pp. 391–435. doi:
10.3233/FAIA200992. url: https://doi.org/10.3233/FAIA200992.

[26] Fabrizio Biondi, Michael A. Enescu, Annelie Heuser, Axel Legay, Kuldeep
S. Meel, and Jean Quilbeuf. “Scalable Approximation of Quantitative In-
formation Flow in Programs.” In: Verification, Model Checking, and Abstract

https://helda.helsinki.fi/handle/10138/237063
https://helda.helsinki.fi/handle/10138/306988
https://helda.helsinki.fi/handle/10138/306988
https://doi.org/10.1007/3-540-49059-0_14
https://helda.helsinki.fi/handle/10138/318450
https://helda.helsinki.fi/handle/10138/318450
https://helda.helsinki.fi/handle/10138/333647
http://ceur-ws.org/Vol-1837/paper5.pdf
https://doi.org/10.3233/FAIA200992
https://doi.org/10.3233/FAIA200992

202 bibliography

Interpretation – 19th International Conference, VMCAI 2018, Los Angeles, CA,
USA, January 7–9, 2018, Proceedings. Ed. by Isil Dillig and Jens Palsberg.
Vol. 10747. Lecture Notes in Computer Science. Springer, 2018, pp. 71–93.
doi: 10.1007/978-3-319-73721-8_4.

[27] Elazar Birnbaum and Eliezer L. Lozinskii. “The Good Old Davis-Putnam
Procedure Helps Counting Models.” In: Journal of Artificial Intelligence Re-
search (JAIR) 10 (1999), pp. 457–477. doi: 10.1613/jair.601.

[28] Jasmin Christian Blanchette, Mathias Fleury, and Christoph Weidenbach.
“A Verified SAT Solver Framework with Learn, Forget, Restart, and Incre-
mentality.” In: Automated Reasoning – 8th International Joint Conference, IJCAR
2016, Coimbra, Portugal, June 27–July 2, 2016, Proceedings. Ed. by Nicola Oli-
vetti and Ashish Tiwari. Vol. 9706. Lecture Notes in Computer Science.
Springer, 2016, pp. 25–44. doi: 10.1007/978-3-319-40229-1_4.

[29] Jasmin Christian Blanchette, MathiasFleury, PeterLammich, and Christoph
Weidenbach. “AVerified SAT Solver Framework with Learn, Forget, Restart,
and Incrementality.” In: J. Autom. Reason. 61.1–4 (2018), pp. 333–365. doi:
10.1007/s10817-018-9455-7.

[30] Bernhard Bliem and Matti Järvisalo. “Centrality Heuristics for Exact Model
Counting.” In: 31st IEEE International Conference on Tools with Artificial In-
telligence, ICTAI 2019, Portland, OR, USA, November 4–6, 2019. IEEE, 2019,
pp. 59–63. doi: 10.1109/ICTAI.2019.00017.

[31] Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky. “On
Compiling CNFs into Structured Deterministic DNNFs.” In: Theory and
Applications of Satisfiability Testing – SAT 2015 – 18th International Conference,
Austin, TX, USA, September 24–27, 2015, Proceedings. Ed. by Marijn Heule
and Sean A. Weaver. Vol. 9340. Lecture Notes in Computer Science. Sprin-
ger, 2015, pp. 199–214. doi: 10.1007/978-3-319-24318-4_15.

[32] Jörg Brauer, Andy King, and Jael Kriener. “Existential Quantification as
Incremental SAT.” In: Computer Aided Verification – 23rd International Con-
ference, CAV 2011, Snowbird, UT, USA, July 14–20, 2011. Proceedings. Ed. by
Ganesh Gopalakrishnan and Shaz Qadeer. Vol. 6806. Lecture Notes in Com-
puter Science. Springer, 2011, pp. 191–207. doi: 10.1007/978-3-642-2211
0-1_17.

[33] Martin Bromberger. “Decision Procedures for Linear Arithmetic. (Quel-
ques procédures de décision pour l’arithmétique linéaire).” PhD thesis.
Saarland University, Saarbrücken, Germany, 2019. url: https://tel.ar
chives-ouvertes.fr/tel-02427371.

[34] Martin Bromberger, Mathias Fleury, Simon Schwarz, and Christoph Wei-
denbach. “SPASS-SATT – A CDCL(LA) Solver.” In: Automated Deduction –
CADE 27 – 27th International Conference on Automated Deduction, Natal, Brazil,
August 27–30, 2019, Proceedings. Ed. by Pascal Fontaine. Vol. 11716. Lecture
Notes in Computer Science. Springer, 2019, pp. 111–122. doi: 10.1007/97
8-3-030-29436-6_7.

[35] Robert Brummayer, Florian Lonsing, and Armin Biere. “Automated Test-
ing and Debugging of SAT and QBF Solvers.” In: Theory and Applications
of Satisfiability Testing – SAT 2010, 13th International Conference, SAT 2010, Ed-
inburgh, UK, July 11–14, 2010. Proceedings. Ed. by Ofer Strichman and Ste-

https://doi.org/10.1007/978-3-319-73721-8_4
https://doi.org/10.1613/jair.601
https://doi.org/10.1007/978-3-319-40229-1_4
https://doi.org/10.1007/s10817-018-9455-7
https://doi.org/10.1109/ICTAI.2019.00017
https://doi.org/10.1007/978-3-319-24318-4_15
https://doi.org/10.1007/978-3-642-22110-1_17
https://doi.org/10.1007/978-3-642-22110-1_17
https://tel.archives-ouvertes.fr/tel-02427371
https://tel.archives-ouvertes.fr/tel-02427371
https://doi.org/10.1007/978-3-030-29436-6_7
https://doi.org/10.1007/978-3-030-29436-6_7

bibliography 203

fan Szeider. Vol. 6175. Lecture Notes in Computer Science. Springer, 2010,
pp. 44–57. doi: 10.1007/978-3-642-14186-7_6.

[36] Jan Burchard, Dominik Erb, and Bernd Becker. “Characterization of Possi-
bly Detected Faults by Accurately Computing their Detection Probability.”
In: 2018 Design, Automation & Test in Europe Conference & Exhibition, DATE
2018, Dresden, Germany, March 19–23, 2018. Ed. by Jan Madsen and Ayse K.
Coskun. IEEE, 2018, pp. 385–390. doi: 10.23919/DATE.2018.8342040.

[37] Jan Burchard, Tobias Schubert, and Bernd Becker. “Laissez-Faire Caching
for Parallel #SAT Solving.” In: Theory and Applications of Satisfiability Test-
ing – SAT 2015 – 18th International Conference, Austin, TX, USA, September 24–
27, 2015, Proceedings. Ed. by Marijn Heule and Sean A. Weaver. Vol. 9340.
Lecture Notes in Computer Science. Springer, 2015, pp. 46–61. doi: 10.10
07/978-3-319-24318-4_5.

[38] Jan Burchard, Tobias Schubert, and Bernd Becker. “Distributed Parallel
#SAT Solving.” In: 2016 IEEE International Conference on Cluster Comput-
ing, CLUSTER 2016, Taipei, Taiwan, September 12–16, 2016. IEEE Computer
Society, 2016, pp. 326–335. doi: 10.1109/CLUSTER.2016.20.

[39] Marco Cadoli and Francesco M. Donini. “A Survey on Knowledge Compi-
lation.” In: AI Communications 10.3–4 (1997), pp. 137–150.

[40] Marco Cadoli, Francesco M. Donini, Paolo Liberatore, and Marco Schaerf.
“Space Efficiency of Propositional Knowledge Representation Formalisms.”
In: Journal of Artificial Intelligence Research (JAIR) 13 (2000), pp. 1–31. doi: 1
0.1613/jair.664.

[41] Florent Capelli. “Understanding the complexity of #SAT using knowledge
compilation.” In: 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, Reykjavik, Iceland, June 20–23, 2017. IEEE Computer Soci-
ety, 2017, pp. 1–10. doi: 10.1109/LICS.2017.8005121.

[42] Florent Capelli, Arnaud Durand, and Stefan Mengel. “Hypergraph Acyclic-
ity and Propositional Model Counting.” In: Theory and Applications of Sat-
isfiability Testing – SAT 2014 – 17th International Conference, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14–17, 2014. Proceed-
ings. Ed. by Carsten Sinz and Uwe Egly. Vol. 8561. Lecture Notes in Com-
puter Science. Springer, 2014, pp. 399–414. doi: 10.1007/978-3-319-0928
4-3_29.

[43] Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia,
and Moshe Y. Vardi. “Distribution-Aware Sampling and Weighted Model
Counting for SAT.” In: Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, July 27–31, 2014, Québec City, Québec, Canada. Ed. by
Carla E. Brodley and Peter Stone. AAAI Press, 2014, pp. 1722–1730. url:
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364.

[44] Supratik Chakraborty, Dror Fried, Kuldeep S. Meel, and Moshe Y. Vardi.
“From Weighted to Unweighted Model Counting.” In: Proceedings of the
Twenty-FourthInternationalJointConferenceonArtificialIntelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25–31, 2015. Ed. by Qiang Yang and Michael
J. Wooldridge. AAAI Press, 2015, pp. 689–695. url: http://ijcai.org/
Abstract/15/103.

https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.23919/DATE.2018.8342040
https://doi.org/10.1007/978-3-319-24318-4_5
https://doi.org/10.1007/978-3-319-24318-4_5
https://doi.org/10.1109/CLUSTER.2016.20
https://doi.org/10.1613/jair.664
https://doi.org/10.1613/jair.664
https://doi.org/10.1109/LICS.2017.8005121
https://doi.org/10.1007/978-3-319-09284-3_29
https://doi.org/10.1007/978-3-319-09284-3_29
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364
http://ijcai.org/Abstract/15/103
http://ijcai.org/Abstract/15/103

204 bibliography

[45] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. “A Scalable
Approximate Model Counter.” In: Principles and Practice of Constraint Pro-
gramming – 19th International Conference, CP 2013, Uppsala, Sweden, September
16–20, 2013. Proceedings. Ed. by Christian Schulte. Vol. 8124. Lecture Notes
in Computer Science. Springer, 2013, pp. 200–216. doi: 10.1007/978-3-64
2-40627-0_18.

[46] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. “Algorithmic
Improvements in Approximate Counting for Probabilistic Inference: From
Linear to Logarithmic SAT Calls.” In: Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY,
USA, 9–15 July 2016. Ed. by Subbarao Kambhampati. IJCAI/AAAI Press,
2016, pp. 3569–3576. url: http://www.ijcai.org/Abstract/16/503.

[47] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. “Approxi-
mate Model Counting.” In: Handbook of Satisfiability. Ed. by Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh. Vol. 336. Frontiers in Ar-
tificial Intelligence and Applications. IOS Press, 2021, pp. 1015–1045. doi:
10.3233/FAIA201010.

[48] Mark Chavira and Adnan Darwiche. “On probabilistic inference by weight-
ed model counting.” In: Artificial Intelligence 172.6–7 (2008), pp. 772–799.

[49] Christopher Condrat and Priyank Kalla. “A Gröbner Basis Approach to
CNF-Formulae Preprocessing.” In: Tools and Algorithms for the Construction
and Analysis of Systems, 13th International Conference, TACAS 2007, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2007 Braga, Portugal, March 24–April 1, 2007, Proceedings. Ed. by Orna Grum-
berg and Michael Huth. Vol. 4424. Lecture Notes in Computer Science.
Springer, 2007, pp. 618–631. doi: 10.1007/978-3-540-71209-1_48.

[50] Bruno Courcelle and Stephan Olariu. “Upper bounds to the clique width
of graphs.” In: Discrete Applied Mathematics 101.1–3 (2000), pp. 77–114. doi:
10.1016/S0166-218X(99)00184-5.

[51] Adnan Darwiche. “Compiling Knowledge into Decomposable Negation
Normal Form.” In: Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July 31–August 6, 1999.
2 Vols., 1450 pages. Ed. by Thomas Dean. Morgan Kaufmann, 1999, pp. 284–
289. url: http://ijcai.org/Proceedings/99-1/Papers/042.pdf.

[52] Adnan Darwiche. “Decomposable Negation Normal Form.” In: Journal of
the ACM 48.4 (2001), pp. 608–647. doi: 10.1145/502090.502091.

[53] Adnan Darwiche. “On the Tractable Counting of Theory Models and its
Application to Truth Maintenance and Belief Revision.” In: Journal of Ap-
plied Non-Classical Logics 11.1–2 (2001), pp. 11–34. doi: 10.3166/jancl.11
.11-34.

[54] Adnan Darwiche. “A Compiler for Deterministic, Decomposable Negation
Normal Form.” In: Proceedings of the Eighteenth National Conference on Arti-
ficial Intelligence and Fourteenth Conference on Innovative Applications of Arti-
ficial Intelligence, July 28–August 1, 2002, Edmonton, Alberta, Canada. Ed. by
Rina Dechter, Michael J. Kearns, and Richard S. Sutton. AAAI Press / The
MIT Press, 2002, pp. 627–634. url: http://www.aaai.org/Library/AAAI/2
002/aaai02-094.php.

https://doi.org/10.1007/978-3-642-40627-0_18
https://doi.org/10.1007/978-3-642-40627-0_18
http://www.ijcai.org/Abstract/16/503
https://doi.org/10.3233/FAIA201010
https://doi.org/10.1007/978-3-540-71209-1_48
https://doi.org/10.1016/S0166-218X(99)00184-5
http://ijcai.org/Proceedings/99-1/Papers/042.pdf
https://doi.org/10.1145/502090.502091
https://doi.org/10.3166/jancl.11.11-34
https://doi.org/10.3166/jancl.11.11-34
http://www.aaai.org/Library/AAAI/2002/aaai02-094.php
http://www.aaai.org/Library/AAAI/2002/aaai02-094.php

bibliography 205

[55] Adnan Darwiche. “New Advances in Compiling CNF into Decomposable
Negation Normal Form.” In: Proceedings of the 16th Eureopean Conference on
Artificial Intelligence, ECAI’2004, including Prestigious Applicants of Intelligent
Systems, PAIS 2004, Valencia, Spain, August 22–27, 2004. Ed. by Ramón López
de Mántaras and Lorenza Saitta. IOS Press, 2004, pp. 328–332.

[56] Adnan Darwiche. “SDD: A New Canonical Representation of Propositional
Knowledge Bases.” In: IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July16–22, 2011.
Ed. by Toby Walsh. IJCAI/AAAI, 2011, pp. 819–826. doi: 10.5591/978-1-
57735-516-8/IJCAI11-143.

[57] Adnan Darwiche and KnotPipatsrisawat. “CompleteAlgorithms.” In: Hand-
book of Satisfiability. Ed. by Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh. Vol. 185. Frontiers in Artificial Intelligence and Applica-
tions. IOS Press, 2009, pp. 99–130. doi: 10.3233/978-1-58603-929-5-99.

[58] Adnan Darwiche and KnotPipatsrisawat. “CompleteAlgorithms.” In: Hand-
book of Satisfiability. Ed. by Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh. Vol. 336. Frontiers in Artificial Intelligence and Applica-
tions. IOS Press, 2021, pp. 101–132. doi: 10.3233/FAIA200986.

[59] Adnan Darwiche and Pierre Marquis. “A Knowledge Compilation Map.”
In: Journal of Artificial Intelligence Research (JAIR) 17 (2002), pp. 229–264. doi:
10.1613/jair.989.

[60] Martin Davis, George Logemann, and Donald W. Loveland. “A Machine
Program for Theorem-Proving.” In: Communications of the ACM 5.7 (1962),
pp. 394–397. doi: 10.1145/368273.368557.

[61] Martin Davis and Hilary Putnam. “A Computing Procedure for Quantifi-
cation Theory.” In: Journal of the ACM 7.3 (1960), pp. 201–215. doi: 10.114
5/321033.321034.

[62] Carmel Domshlak and Jörg Hoffmann. “Probabilistic Planning via Heuris-
tic Forward Search and Weighted Model Counting.” In: Journal of Artificial
Intelligence Research (JAIR) 30 (2007), pp. 565–620. doi: 10.1613/jair.2289.

[63] Jeffrey M. Dudek, Vu H. N. Phan, and Moshe Y. Vardi. “DPMC: Weighted
Model Counting by Dynamic Programming on Project-Join Trees.” In: Prin-
ciples and Practice of Constraint Programming – 26th International Conference,
CP 2020, Louvain-la-Neuve, Belgium, September 7–11, 2020, Proceedings. Ed. by
Helmut Simonis. Vol. 12333. Lecture Notes in Computer Science. Springer,
2020, pp. 211–230. doi: 10.1007/978-3-030-58475-7_13.

[64] Jeffrey M. Dudek, Vu Phan, and Moshe Y. Vardi. “ADDMC: Weighted
Model Counting with Algebraic Decision Diagrams.” In: The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second In-
novative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7–12, 2020. AAAI Press, 2020, pp. 1468–1476.
url: https://aaai.org/ojs/index.php/AAAI/article/view/5505.

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://doi.org/10.3233/978-1-58603-929-5-99
https://doi.org/10.3233/FAIA200986
https://doi.org/10.1613/jair.989
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1613/jair.2289
https://doi.org/10.1007/978-3-030-58475-7_13
https://aaai.org/ojs/index.php/AAAI/article/view/5505

206 bibliography

[65] Niklas Eén and Armin Biere. “Effective Preprocessing in SAT Through
Variable and Clause Elimination.” In: Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June 19–23,
2005, Proceedings. Ed. by Fahiem Bacchus and Toby Walsh. Vol. 3569. Lec-
ture Notes in Computer Science. Springer, 2005, pp. 61–75. doi: 10.1007/1
1499107_5.

[66] Niklas Eén, Alan Mishchenko, and Niklas Sörensson. “Applying Logic Syn-
thesis for Speeding Up SAT.” In: Theory and Applications of Satisfiability
Testing – SAT 2007 – 10th International Conference, Lisbon, Portugal, May 28–
31, 2007, Proceedings. Ed. by João Marques-Silva and Karem A. Sakallah.
Vol. 4501. Lecture Notes in Computer Science. Springer, 2007, pp. 272–286.
doi: 10.1007/978-3-540-72788-0_26.

[67] Niklas Eén and Niklas Sörensson. “Temporal induction by incremental SAT
solving.” In: Electron. Notes Theor. Comput. Sci. 89.4 (2003), pp. 543–560. doi:
10.1016/S1571-0661(05)82542-3.

[68] Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Selman. “Low-
density Parity Constraints for Hashing-Based Discrete Integration.” In: Pro-
ceedings of the 31th International Conference on Machine Learning, ICML 2014,
Beijing, China, 21–26 June 2014. Vol. 32. JMLR Workshop and Conference
Proceedings. JMLR.org, 2014, pp. 271–279. url: http://proceedings.mlr.
press/v32/ermon14.html.

[69] Stefano Ermon, Carla P. Gomes, and Bart Selman. “Uniform Solution Sam-
pling Using a Constraint Solver As an Oracle.” In: Proceedings of the Twenty-
Eighth Conference on Uncertainty in Artificial Intelligence, Catalina Island, CA,
USA, August 14–18, 2012. Ed. by Nando de Freitas and Kevin P. Murphy.
AUAI Press, 2012, pp. 255–264. url: https://dslpitt.org/uai/displayAr
ticleDetails.jsp?mmnu=1&smnu=2&article_id=2288&proceeding_id=28.

[70] Hélène Fargier and Jérôme Mengin. “A Knowledge Compilation Map for
Conditional Preference Statements-based Languages.” In: AAMAS ’21: 20th
International Conference on Autonomous Agents and Multiagent Systems, Vir-
tual Event, United Kingdom, May 3-7, 2021. Ed. by Frank Dignum, Alessio
Lomuscio, Ulle Endriss, and Ann Nowé. ACM, 2021, pp. 492–500. url:
https://dl.acm.org/doi/10.5555/3463952.3464014.

[71] Katalin Fazekas, Armin Biere, and Christoph Scholl. “Incremental Inpro-
cessing in SAT Solving.” In: Theory and Applications of Satisfiability Testing –
SAT 2019 – 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9–
12, 2019, Proceedings. Ed. by Mikolás Janota and Inês Lynce. Vol. 11628. Lec-
ture Notes in Computer Science. Springer, 2019, pp. 136–154. doi: 10.100
7/978-3-030-24258-9_9.

[72] Katalin Fazekas, Martina Seidl, and Armin Biere. “A Duality-Aware Cal-
culus for Quantified Boolean Formulas.” In: 18th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2016,
Timisoara, Romania, September 24–27, 2016. Ed. by James H. Davenport, Viorel
Negru, TetsuoIda, TudorJebelean, DanaPetcu, StephenM.Watt, and Daniela
Zaharie. IEEE, 2016, pp. 181–186. doi: 10.1109/SYNASC.2016.038.

https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/978-3-540-72788-0_26
https://doi.org/10.1016/S1571-0661(05)82542-3
http://proceedings.mlr.press/v32/ermon14.html
http://proceedings.mlr.press/v32/ermon14.html
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2288&proceeding_id=28
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2288&proceeding_id=28
https://dl.acm.org/doi/10.5555/3463952.3464014
https://doi.org/10.1007/978-3-030-24258-9_9
https://doi.org/10.1007/978-3-030-24258-9_9
https://doi.org/10.1109/SYNASC.2016.038

bibliography 207

[73] Linus Feiten, Matthias Sauer, Tobias Schubert, Alexander Czutro, Eberhard
Böhl, Ilia Polian, and Bernd Becker. “#SAT-based Vulnerability Analysis
of Security Components – A Case Study.” In: 2012 IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems,
DFT 2012, Austin, TX, USA, October 3–5, 2012. IEEE Computer Society, 2012,
pp. 49–54. doi: 10.1109/DFT.2012.6378198.

[74] Linus Feiten, Matthias Sauer, Tobias Schubert, Victor Tomashevich, Ilia Po-
lian, and Bernd Becker. “Formal Vulnerability Analysis of Security Compo-
nents.” In: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34.8 (2015),
pp. 1358–1369. doi: 10.1109/TCAD.2015.2448687.

[75] Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran.
“Exploiting Treewidth for Projected Model Counting and Its Limits.” In:
Theory and Applications of Satisfiability Testing – SAT 2018 – 21st International
Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK,July9–12,2018,Proceedings. Ed. by Olaf Beyersdorff and
Christoph M. Wintersteiger. Vol. 10929. Lecture Notes in Computer Sci-
ence. Springer, 2018, pp. 165–184. doi: 10.1007/978-3-319-94144-8_11.

[76] Johannes Klaus Fichte, Markus Hecher, Stefan Woltran, and Markus Zisser.
“Weighted Model Counting on the GPU by Exploiting Small Treewidth.”
In: 26th Annual European Symposium on Algorithms, ESA 2018, August 20–22,
2018, Helsinki, Finland. Ed. by Yossi Azar, Hannah Bast, and Grzegorz Her-
man. Vol. 112. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018, 28:1–28:16. doi: 10.4230/LIPIcs.ESA.2018.28.

[77] Eldar Fischer, Johann A. Makowsky, and Elena V. Ravve. “Counting truth
assignments of formulas of bounded tree-width or clique-width.” In: Dis-
crete Applied Mathematics 156.4 (2008), pp. 511–529. doi: 10.1016/j.dam.20
06.06.020.

[78] Mathias Fleury. “Formalisation of ground inference systems in a proof
assistant.” MA thesis. École normale supérieure de Rennes, 2015. url: h
ttps://www.mpi-inf.mpg.de/fileadmin/inf/rg1/Documents/fleury_

master_thesis.pdf.

[79] Anton Fuxjaeger and Vaishak Belle. “Scaling up Probabilistic Inference in
Linear and Non-linear Hybrid Domains by Leveraging Knowledge Com-
pilation.” In: Proceedings of the 12th International Conference on Agents and
Artificial Intelligence, ICAART 2020, Volume 2, Valletta, Malta, February 22–24,
2020. Ed. by Ana Paula Rocha, Luc Steels, and H. Jaap van den Herik.
SCITEPRESS, 2020, pp. 347–355. doi: 10.5220/0008896003470355.

[80] José Angel Galindo, Mathieu Acher, Juan Manuel Tirado, Cristian Vidal,
Benoit Baudry, and David Benavides. “Exploiting the Enumeration of all
Feature Model Configurations: A New Perspective with Distributed Com-
puting.” In: Proceedings of the 20th International Systems and Software Prod-
uct Line Conference, SPLC 2016, Beijing, China, September 16–23, 2016. Ed. by
Hong Mei. ACM, 2016, pp. 74–78. doi: 10.1145/2934466.2934478.

[81] Robert Ganian and Stefan Szeider. “Community Structure Inspired Algo-
rithms for SAT and #SAT.” In: Theory and Applications of Satisfiability Test-
ing – SAT 2015 – 18th International Conference, Austin, TX, USA, September 24–
27, 2015, Proceedings. Ed. by Marijn Heule and Sean A. Weaver. Vol. 9340.

https://doi.org/10.1109/DFT.2012.6378198
https://doi.org/10.1109/TCAD.2015.2448687
https://doi.org/10.1007/978-3-319-94144-8_11
https://doi.org/10.4230/LIPIcs.ESA.2018.28
https://doi.org/10.1016/j.dam.2006.06.020
https://doi.org/10.1016/j.dam.2006.06.020
https://www.mpi-inf.mpg.de/fileadmin/inf/rg1/Documents/fleury_master_thesis.pdf
https://www.mpi-inf.mpg.de/fileadmin/inf/rg1/Documents/fleury_master_thesis.pdf
https://www.mpi-inf.mpg.de/fileadmin/inf/rg1/Documents/fleury_master_thesis.pdf
https://doi.org/10.5220/0008896003470355
https://doi.org/10.1145/2934466.2934478

208 bibliography

Lecture Notes in Computer Science. Springer, 2015, pp. 223–237. doi: 10.1
007/978-3-319-24318-4_17.

[82] Robert Ganian and Stefan Szeider. “New Width Parameters for Model
Counting.” In: Theory and Applications of Satisfiability Testing – SAT 2017 –
20th International Conference, Melbourne, VIC, Australia, August 28–September
1, 2017, Proceedings. Ed. by Serge Gaspers and Toby Walsh. Vol. 10491. Lec-
ture Notes in Computer Science. Springer, 2017, pp. 38–52. doi: 10.1007/9
78-3-319-66263-3_3.

[83] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.
“clasp: A Conflict-Driven Answer Set Solver.” In: Logic Programming and
Nonmonotonic Reasoning, 9th International Conference, LPNMR 2007, Tempe,
AZ, USA, May 15–17, 2007, Proceedings. Ed. by Chitta Baral, Gerhard Brewka,
and John S. Schlipf. Vol. 4483. Lecture Notes in Computer Science. Sprin-
ger, 2007, pp. 260–265. doi: 10.1007/978-3-540-72200-7_23.

[84] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. “Solution Enu-
meration for Projected Boolean Search Problems.” In: Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Prob-
lems, 6th International Conference, CPAIOR 2009, Pittsburgh, PA, USA, May 27–
31, 2009, Proceedings. Ed. by Willem Jan van Hoeve and John N. Hooker.
Vol. 5547. Lecture Notes in Computer Science. Springer, 2009, pp. 71–86.
doi: 10.1007/978-3-642-01929-6_7.

[85] Vibhav Gogate and Rina Dechter. “Approximate Counting by Sampling the
Backtrack-free Search Space.” In: Proceedings of the Twenty-Second AAAI Con-
ference on Artificial Intelligence, July 22–26, 2007, Vancouver, British Columbia,
Canada. AAAI Press, 2007, pp. 198–203. url: http : / / www . aaai . org /

Library/AAAI/2007/aaai07-030.php.

[86] Carla P. Gomes, Jörg Hoffmann, Ashish Sabharwal, and Bart Selman. “From
Sampling to Model Counting.” In: IJCAI 2007, Proceedings of the 20th In-
ternational Joint Conference on Artificial Intelligence, Hyderabad, India, January
6–12, 2007. Ed. by Manuela M. Veloso. 2007, pp. 2293–2299. url: http:

//ijcai.org/Proceedings/07/Papers/369.pdf.

[87] Carla P. Gomes, Jörg Hoffmann, Ashish Sabharwal, and Bart Selman. “Short
XORs for Model Counting: From Theory to Practice.” In: Theory and Appli-
cations of Satisfiability Testing – SAT 2007 – 10th International Conference, Lis-
bon, Portugal, May 28–31, 2007, Proceedings. Ed. by João Marques-Silva and
Karem A. Sakallah. Vol. 4501. Lecture Notes in Computer Science. Springer,
2007, pp. 100–106. doi: 10.1007/978-3-540-72788-0_13.

[88] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. “Model Counting:
A New Strategy for Obtaining Good Bounds.” In: Proceedings, The Twenty-
First National Conference on Artificial Intelligence and the Eighteenth Innovative
Applications of Artificial Intelligence Conference, July 16–20, 2006, Boston, Mas-
sachusetts, USA. AAAI Press, 2006, pp. 54–61. url: http://www.aaai.org/
Library/AAAI/2006/aaai06-009.php.

[89] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. “Model Counting.”
In: Handbook of Satisfiability. Ed. by Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh. Vol. 185. Frontiers in Artificial Intelligence and
Applications. IOS Press, 2009, pp. 633–654. doi: 10.3233/978-1-58603-92
9-5-633.

https://doi.org/10.1007/978-3-319-24318-4_17
https://doi.org/10.1007/978-3-319-24318-4_17
https://doi.org/10.1007/978-3-319-66263-3_3
https://doi.org/10.1007/978-3-319-66263-3_3
https://doi.org/10.1007/978-3-540-72200-7_23
https://doi.org/10.1007/978-3-642-01929-6_7
http://www.aaai.org/Library/AAAI/2007/aaai07-030.php
http://www.aaai.org/Library/AAAI/2007/aaai07-030.php
http://ijcai.org/Proceedings/07/Papers/369.pdf
http://ijcai.org/Proceedings/07/Papers/369.pdf
https://doi.org/10.1007/978-3-540-72788-0_13
http://www.aaai.org/Library/AAAI/2006/aaai06-009.php
http://www.aaai.org/Library/AAAI/2006/aaai06-009.php
https://doi.org/10.3233/978-1-58603-929-5-633
https://doi.org/10.3233/978-1-58603-929-5-633

bibliography 209

[90] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. “Model Counting.”
In: Handbook of Satisfiability. Ed. by Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh. Vol. 336. Frontiers in Artificial Intelligence and
Applications. IOS Press, 2021, pp. 993–1014. doi: 10.3233/FAIA201009.

[91] Alexandra Goultiaeva and Fahiem Bacchus. “Exploiting QBF Duality on
a Circuit Representation.” In: Proceedings of the Twenty-Fourth AAAI Confer-
ence on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11–15,
2010. Ed. by Maria Fox and David Poole. AAAI Press, 2010. url: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1791.

[92] Alexandra Goultiaeva and Fahiem Bacchus. “Off the Trail: Re-examining
the CDCL Algorithm.” In: Theory and Applications of Satisfiability Testing –
SAT 2012 – 15th International Conference, Trento, Italy, June 17–20, 2012. Pro-
ceedings. Ed. by Alessandro Cimatti and Roberto Sebastiani. Vol. 7317. Lec-
ture Notes in Computer Science. Springer, 2012, pp. 30–43. doi: 10.1007/9
78-3-642-31612-8_4.

[93] Alexandra Goultiaeva, Martina Seidl, and Armin Biere. “Bridging the Gap
between Dual Propagation and CNF-based QBF Solving.” In: Design, Au-
tomation and Test in Europe, DATE 13, Grenoble, France, March 18–22, 2013.
Ed. by Enrico Macii. EDA Consortium San Jose, CA, USA / ACM DL, 2013,
pp. 811–814. doi: 10.7873/DATE.2013.172.

[94] Orna Grumberg, Assaf Schuster, and Avi Yadgar. “Memory Efficient All-
Solutions SAT Solver and Its Application for Reachability Analysis.” In: For-
mal Methods in Computer-Aided Design, 5th International Conference, FMCAD
2004, Austin, Texas, USA, November 15–17, 2004, Proceedings. Ed. by Alan J.
Hu and Andrew K. Martin. Vol. 3312. Lecture Notes in Computer Science.
Springer, 2004, pp. 275–289. doi: 10.1007/978-3-540-30494-4_20.

[95] Aarti Gupta, Zijiang Yang, Pranav Ashar, and Anubhav Gupta. “SAT-Based
Image Computation with Application in Reachability Analysis.” In: Formal
Methods in Computer-Aided Design, Third International Conference, FMCAD
2000, Austin, Texas, USA, November 1–3, 2000, Proceedings. Ed. by Warren
A. Hunt Jr. and Steven D. Johnson. Vol. 1954. Lecture Notes in Computer
Science. Springer, 2000, pp. 354–371. doi: 10.1007/3-540-40922-X_22.

[96] Rui Henriques, Inês Lynce, and Vasco M. Manquinho. “On When and How
to use SAT to Mine Frequent Itemsets.” In: CoRR abs/1207.6253 (2012).
arXiv: 1207.6253. url: http://arxiv.org/abs/1207.6253.

[97] Steffen Hölldobler, Norbert Manthey, Tobias Philipp, and Peter Steinke. “Gener-
ic CDCL – A Formalization of Modern Propositional Satisfiability Solvers.”
In: POS-14. Fifth Pragmatics of SAT workshop, a workshop of the SAT 2014 con-
ference, part of FLoC 2014 during the Vienna Summer of Logic, July 13, 2014,
Vienna, Austria. Ed. by Daniel Le Berre. Vol. 27. EPiC Series in Computing.
EasyChair, 2014, pp. 89–102. url: https://easychair.org/publications/
paper/nTn.

[98] John N. Hooker. “Solving the incremental satisfiability problem.” In: J. Log.
Program. 15.1–2 (1993), pp. 177–186. doi: 10.1016/0743-1066(93)90018-C.

https://doi.org/10.3233/FAIA201009
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1791
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1791
https://doi.org/10.1007/978-3-642-31612-8_4
https://doi.org/10.1007/978-3-642-31612-8_4
https://doi.org/10.7873/DATE.2013.172
https://doi.org/10.1007/978-3-540-30494-4_20
https://doi.org/10.1007/3-540-40922-X_22
https://arxiv.org/abs/1207.6253
http://arxiv.org/abs/1207.6253
https://easychair.org/publications/paper/nTn
https://easychair.org/publications/paper/nTn
https://doi.org/10.1016/0743-1066(93)90018-C

210 bibliography

[99] Jinbo Huang and Adnan Darwiche. “DPLL with a Trace: From SAT to
Knowledge Compilation.” In: IJCAI-05, Proceedings of the Nineteenth Interna-
tional Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July
30–August 5, 2005. Ed. by Leslie Pack Kaelbling and Alessandro Saffiotti.
Professional Book Center, 2005, pp. 156–162. url: http : / / ijcai . org /

Proceedings/05/Papers/0876.pdf.

[100] Jinbo Huang and Adnan Darwiche. “The Language of Search.” In: Journal
of Artificial Intelligence Research (JAIR) 29 (2007), pp. 191–219. doi: 10.1613
/jair.2097.

[101] Markus Iser, Carsten Sinz, and Mana Taghdiri. “Minimizing Models for
Tseitin-Encoded SAT Instances.” In: Theory and Applications of Satisfiability
Testing – SAT 2013 – 16th International Conference, Helsinki, Finland, July 8–12,
2013. Proceedings. Ed. by Matti Järvisalo and Allen Van Gelder. Vol. 7962.
Lecture Notes in Computer Science. Springer, 2013, pp. 224–232. doi: 10.1
007/978-3-642-39071-5_17.

[102] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. “Random Genera-
tion of Combinatorial Structures from a Uniform Distribution.” In: Theor.
Comput. Sci. 43 (1986), pp. 169–188. doi: 10.1016/0304-3975(86)90174-X.

[103] HoonSang Jin, HyoJung Han, and Fabio Somenzi. “Efficient Conflict Anal-
ysis for Finding All Satisfying Assignments of a Boolean Circuit.” In: Tools
and Algorithms for the Construction and Analysis of Systems, 11th International
Conference, TACAS 2005, Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4–8, 2005, Pro-
ceedings. Ed. by Nicolas Halbwachs and Lenore D. Zuck. Vol. 3440. Lecture
Notes in Computer Science. Springer, 2005, pp. 287–300. doi: 10.1007/97
8-3-540-31980-1_19.

[104] Vladimir Klebanov, Norbert Manthey, and Christian J. Muise. “SAT-Based
Analysis and Quantification of Information Flow in Programs.” In: Quanti-
tative Evaluation of Systems – 10th International Conference, QEST 2013, Buenos
Aires, Argentina, August 27–30, 2013. Proceedings. Ed. by Kaustubh R. Joshi,
Markus Siegle, Mariëlle Stoelinga, and Pedro R. D’Argenio. Vol. 8054. Lec-
ture Notes in Computer Science. Springer, 2013, pp. 177–192. doi: 10.100
7/978-3-642-40196-1_16.

[105] Vladimir Klebanov, Alexander Weigl, and Jörg Weisbarth. “Sound Prob-
abilistic #SAT with Projection.” In: Proceedings 14th International Workshop
Quantitative Aspects of Programming Languages and Systems, QAPL 2016, Eind-
hoven, The Netherlands, April 2–3, 2016. Ed. by Mirco Tribastone and Herbert
Wiklicky. Vol. 227. EPTCS. 2016, pp. 15–29. doi: 10.4204/EPTCS.227.2.

[106] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. “Observations on the SI-
MON Block Cipher Family.” In: Advances in Cryptology – CRYPTO 2015 –
35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16–20,
2015, Proceedings, Part I. Ed. by Rosario Gennaro and Matthew Robshaw.
Vol. 9215. Lecture Notes in Computer Science. Springer, 2015, pp. 161–185.
doi: 10.1007/978-3-662-47989-6_8.

[107] Timothy Kopp, Parag Singla, and Henry A. Kautz. “Toward Caching Sym-
metrical Subtheories for Weighted Model Counting.” In: Beyond NP, Papers
from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February 12, 2016. Ed.
by Adnan Darwiche. Vol. WS-16-05. AAAI Workshops. AAAI Press, 2016.

http://ijcai.org/Proceedings/05/Papers/0876.pdf
http://ijcai.org/Proceedings/05/Papers/0876.pdf
https://doi.org/10.1613/jair.2097
https://doi.org/10.1613/jair.2097
https://doi.org/10.1007/978-3-642-39071-5_17
https://doi.org/10.1007/978-3-642-39071-5_17
https://doi.org/10.1016/0304-3975(86)90174-X
https://doi.org/10.1007/978-3-540-31980-1_19
https://doi.org/10.1007/978-3-540-31980-1_19
https://doi.org/10.1007/978-3-642-40196-1_16
https://doi.org/10.1007/978-3-642-40196-1_16
https://doi.org/10.4204/EPTCS.227.2
https://doi.org/10.1007/978-3-662-47989-6_8

bibliography 211

url: http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/1268
4.

[108] Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis, and Samuel Thomas.
“Knowledge Compilation for Model Counting: Affine Decision Trees.” In:
IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artifi-
cial Intelligence, Beijing, China, August 3–9, 2013. Ed. by Francesca Rossi. IJ-
CAI/AAAI, 2013, pp. 947–953. url: http://www.aaai.org/ocs/index.
php/IJCAI/IJCAI13/paper/view/6574.

[109] Lukas Kroc, Ashish Sabharwal, and Bart Selman. “Leveraging Belief Prop-
agation, Backtrack Search, and Statistics for Model Counting.” In: Integra-
tion of AI and OR Techniques in Constraint Programming for Combinatorial Op-
timization Problems, 5th International Conference, CPAIOR 2008, Paris, France,
May 20–23, 2008, Proceedings. Ed. by Laurent Perron and Michael A. Trick.
Vol. 5015. Lecture Notes in Computer Science. Springer, 2008, pp. 127–141.
doi: 10.1007/978-3-540-68155-7_12.

[110] Andreas Kübler, Christoph Zengler, and Wolfgang Küchlin. “Model Count-
ing in Product Configuration.” In: Proceedings First International Workshop
on Logics for Component Configuration, LoCoCo 2010, Edinburgh, UK, 10th July
2010. Ed. by Inês Lynce and Ralf Treinen. Vol. 29. EPTCS. 2010, pp. 44–53.
doi: 10.4204/EPTCS.29.5.

[111] Jonathan Kuck, Tri Dao, Shenjia Zhao, Burak Bartan, Ashish Sabharwal,
and Stefano Ermon. “Adaptive Hashing for Model Counting.” In: Proceed-
ings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI
2019, Tel Aviv, Israel, July 22–25, 2019. Ed. by Amir Globerson and Ricardo
Silva. Vol. 115. Proceedings of Machine Learning Research. AUAI Press,
2019, pp. 271–280. url: http://proceedings.mlr.press/v115/kuck20
a.html.

[112] T.K. Satish Kumar. “A Model Counting Characterization of Diagnoses.” In:
Proceedings of the Thirteenth International Workshop on Principles of Diagnosis,
DX-2002. 2002, pp. 70–76.

[113] Jean-Marie Lagniez, Emmanuel Lonca, and Pierre Marquis. “Improving
Model Counting by Leveraging Definability.” In: Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9–15 July 2016. Ed. by Subbarao Kambhampati. IJCAI/AAAI
Press, 2016, pp. 751–757. url: http://www.ijcai.org/Abstract/16/112.

[114] Jean-Marie Lagniez and Pierre Marquis. “An Improved Decision-DNNF
Compiler.” In: Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19–25, 2017.
Ed. by Carles Sierra. ijcai.org, 2017, pp. 667–673. doi: 10.24963/ijcai.201
7/93.

[115] Jean-Marie Lagniez and Pierre Marquis. “On Preprocessing Techniques
and Their Impact on Propositional Model Counting.” In: J. Autom. Reason.
58.4 (2017), pp. 413–481. doi: 10.1007/s10817-016-9370-8.

[116] Jean-Marie Lagniez and Pierre Marquis. “A Recursive Algorithm for Pro-
jected Model Counting.” In: The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January

http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12684
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12684
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6574
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6574
https://doi.org/10.1007/978-3-540-68155-7_12
https://doi.org/10.4204/EPTCS.29.5
http://proceedings.mlr.press/v115/kuck20a.html
http://proceedings.mlr.press/v115/kuck20a.html
http://www.ijcai.org/Abstract/16/112
https://doi.org/10.24963/ijcai.2017/93
https://doi.org/10.24963/ijcai.2017/93
https://doi.org/10.1007/s10817-016-9370-8

212 bibliography

27–February 1, 2019. AAAI Press, 2019, pp. 1536–1543. doi: 10.1609/aaai.
v33i01.33011536.

[117] Jean-Marie Lagniez, Pierre Marquis, and Nicolas Szczepanski. “DMC: A
Distributed Model Counter.” In: Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2018, July 13–19, 2018,
Stockholm, Sweden. Ed. by Jérôme Lang. ijcai.org, 2018, pp. 1331–1338. doi:
10.24963/ijcai.2018/185.

[118] Shuvendu K. Lahiri, Robert Nieuwenhuis, and Albert Oliveras. “SMT Tech-
niques for Fast Predicate Abstraction.” In: Computer Aided Verification, 18th
International Conference, CAV 2006, Seattle, WA, USA, August 17–20, 2006, Pro-
ceedings. Ed. by Thomas Ball and Robert B. Jones. Vol. 4144. Lecture Notes
in Computer Science. Springer, 2006, pp. 424–437. doi: 10.1007/11817963
_39.

[119] Bin Li, Michael S. Hsiao, and Shuo Sheng. “A Novel SAT All-Solutions
Solver for Efficient Preimage Computation.” In: 2004 Design, Automation
and Test in Europe Conference and Exposition (DATE 2004), 16–20 February
2004, Paris, France. IEEE Computer Society, 2004, pp. 272–279. doi: 10.110
9/DATE.2004.1268860.

[120] Wei Li, Peter van Beek, and Pascal Poupart. “Performing Incremental Bayesian
Inference by Dynamic Model Counting.” In: Proceedings, The Twenty-First
National Conference on Artificial Intelligence and the Eighteenth Innovative Ap-
plications of Artificial Intelligence Conference, July 16–20, 2006, Boston, Mas-
sachusetts, USA. AAAI Press, 2006, pp. 1173–1179. url: http://www.aaai.
org/Library/AAAI/2006/aaai06-184.php.

[121] Jiajing Ling, Kushagra Chandak, and Akshat Kumar. “Integrating Knowl-
edge Compilation with Reinforcement Learning for Routes.” In: Proceedings
of the Thirty-First International Conference on Automated Planning and Schedul-
ing, ICAPS 2021, Guangzhou, China (virtual), August 2–13, 2021. Ed. by Su-
sanne Biundo, Minh Do, Robert Goldman, Michael Katz, Qiang Yang, and
Hankz Hankui Zhuo. AAAI Press, 2021, pp. 542–550. url: https://ojs.
aaai.org/index.php/ICAPS/article/view/16002.

[122] Florian Lonsing and Uwe Egly. “Incremental QBF Solving.” In: Princi-
ples and Practice of Constraint Programming – 20th International Conference, CP
2014, Lyon, France, September 8–12, 2014. Proceedings. Ed. by Barry O’Sullivan.
Vol. 8656. Lecture Notes in Computer Science. Springer, 2014, pp. 514–530.
doi: 10.1007/978-3-319-10428-7_38.

[123] Michael Makkai. “Admissible Sets and Infinitary Logic.” In: Handbook of
Mathematical Logic. Ed. by Jon Barwise. Vol. 90. Studies in Logic and the
Foundations of Mathematics. North-Holland, 1977, pp. 233–281. doi: 10.1
016/S0049-237X(08)71103-0.

[124] Filip Marić and Predrag Janičić. “Formalization of Abstract State Transition
Systems for SAT.” In: Logical Methods in Computer Science 7.3 (2011). doi: 1
0.2168/LMCS-7(3:19)2011.

[125] João P. Marques-Silva, Inês Lynce, and Sharad Malik. “Conflict-Driven Clause
Learning SAT Solvers.” In: Handbook of Satisfiability. Ed. by Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh. Vol. 185. Frontiers in
Artificial Intelligence and Applications. IOS Press, 2009, pp. 131–153. doi:
10.3233/978-1-58603-929-5-131.

https://doi.org/10.1609/aaai.v33i01.33011536
https://doi.org/10.1609/aaai.v33i01.33011536
https://doi.org/10.24963/ijcai.2018/185
https://doi.org/10.1007/11817963_39
https://doi.org/10.1007/11817963_39
https://doi.org/10.1109/DATE.2004.1268860
https://doi.org/10.1109/DATE.2004.1268860
http://www.aaai.org/Library/AAAI/2006/aaai06-184.php
http://www.aaai.org/Library/AAAI/2006/aaai06-184.php
https://ojs.aaai.org/index.php/ICAPS/article/view/16002
https://ojs.aaai.org/index.php/ICAPS/article/view/16002
https://doi.org/10.1007/978-3-319-10428-7_38
https://doi.org/10.1016/S0049-237X(08)71103-0
https://doi.org/10.1016/S0049-237X(08)71103-0
https://doi.org/10.2168/LMCS-7(3:19)2011
https://doi.org/10.2168/LMCS-7(3:19)2011
https://doi.org/10.3233/978-1-58603-929-5-131

bibliography 213

[126] João P. Marques-Silva, Inês Lynce, and Sharad Malik. “Conflict-Driven Clause
Learning SAT Solvers.” In: Handbook of Satisfiability. Ed. by Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh. Vol. 336. Frontiers in
Artificial Intelligence and Applications. IOS Press, 2021, pp. 133–182. doi:
10.3233/FAIA200987.

[127] João P. Marques-Silva and Karem A. Sakallah. “GRASP – A New Search
Algorithm for Satisfiability.” In: Proceedings of the 1996 IEEE/ACM Interna-
tional Conference on Computer-Aided Design, ICCAD 1996, San Jose, CA, USA,
November 10–14, 1996. Ed. by Rob A. Rutenbar and Ralph H. J. M. Otten.
IEEE Computer Society / ACM, 1996, pp. 220–227. doi: 10.1109/ICCAD.1
996.569607.

[128] João P. Marques-Silva and Karem A. Sakallah. “GRASP: A Search Algo-
rithm for Propositional Satisfiability.” In: IEEE Trans. Computers 48.5 (1999),
pp. 506–521. doi: 10.1109/12.769433.

[129] João Marques-Silva. “Computing with SAT Oracles: Past, Present and Fu-
ture.” In: Sailing Routes in the World of Computation – 14th Conference on Com-
putability in Europe, CiE 2018, Kiel, Germany, July 30–August 3, 2018, Proceed-
ings. Ed. by Florin Manea, Russell G. Miller, and Dirk Nowotka. Vol. 10936.
Lecture Notes in Computer Science. Springer, 2018, pp. 264–276. doi: 10.1
007/978-3-319-94418-0_27.

[130] Robert Mateescu. Treewidth in Industrial SAT Benchmarks. Technical report
MSR-TR-2011-22. 7 J J Thomson Avenue, Cambridge CB3 0FB, UK: Mi-
crosoft Research, 2011.

[131] Kenneth L. McMillan. “Applying SAT Methods in Unbounded Symbolic
Model Checking.” In: Computer Aided Verification, 14th International Confer-
ence, CAV 2002,Copenhagen, Denmark, July 27–31, 2002, Proceedings. Ed. by Ed
Brinksma and Kim Guldstrand Larsen. Vol. 2404. Lecture Notes in Com-
puter Science. Springer, 2002, pp. 250–264. doi: 10.1007/3-540-45657-0
_19.

[132] Kenneth L. McMillan. “Interpolation and SAT-Based Model Checking.” In:
Computer Aided Verification, 15th International Conference, CAV 2003, Boulder,
CO, USA, July 8–12, 2003, Proceedings. Ed. by Warren A. Hunt Jr. and Fabio
Somenzi. Vol. 2725. Lecture Notes in Computer Science. Springer, 2003,
pp. 1–13. doi: 10.1007/978-3-540-45069-6_1.

[133] Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon.
“CDCLSym: Introducing Effective Symmetry Breaking in SAT Solving.” In:
Tools and Algorithms for the Construction and Analysis of Systems – 24th Inter-
national Conference, TACAS 2018, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April
14–20, 2018, Proceedings, Part I. Ed. by Dirk Beyer and Marieke Huisman.
Vol. 10805. Lecture Notes in Computer Science. Springer, 2018, pp. 99–114.
doi: 10.1007/978-3-319-89960-2_6.

[134] Peter Bro Miltersen, Jaikumar Radhakrishnan, and Ingo Wegener. “On con-
verting CNF to DNF.” In: Theor. Comput. Sci. 347.1–2 (2005), pp. 325–335.
doi: 10.1016/j.tcs.2005.07.029.

[135] Shin-ichi Minato. “Fast Generation of Prime-Irredundant Covers from Bi-
nary Decision Diagrams.” In: IEICE Trans. Fundamentals E76-A.6 (1993),
pp. 967–973.

https://doi.org/10.3233/FAIA200987
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1109/12.769433
https://doi.org/10.1007/978-3-319-94418-0_27
https://doi.org/10.1007/978-3-319-94418-0_27
https://doi.org/10.1007/3-540-45657-0_19
https://doi.org/10.1007/3-540-45657-0_19
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-319-89960-2_6
https://doi.org/10.1016/j.tcs.2005.07.029

214 bibliography

[136] Shin-ichi Minato and Giovanni De Micheli. “Finding all simple disjunctive
decompositions using irredundant sum-of-products forms.” In: Proceedings
of the 1998 IEEE/ACM International Conference on Computer-Aided Design, IC-
CAD 1998, San Jose, CA, USA, November 8-12, 1998. Ed. by Hiroto Yasuura.
ACM / IEEE Computer Society, 1998, pp. 111–117. doi: 10.1145/288548.2
88586.

[137] Sibylle Möhle and Armin Biere. “Dualizing Projected Model Counting.”
In: IEEE 30th International Conference on Tools with Artificial Intelligence, IC-
TAI 2018, 5–7 November 2018, Volos, Greece. Ed. by Lefteri H. Tsoukalas, Éric
Grégoire, and Miltiadis Alamaniotis. IEEE, 2018, pp. 702–709. doi: 10.110
9/ICTAI.2018.00111.

[138] Sibylle Möhle and Armin Biere. “Backing Backtracking.” In: Theory and
Applications of Satisfiability Testing – SAT 2019 – 22nd International Conference,
SAT 2019, Lisbon, Portugal, July 9–12, 2019, Proceedings. Ed. by Mikolás Jan-
ota and Inês Lynce. Vol. 11628. Lecture Notes in Computer Science. Sprin-
ger, 2019, pp. 250–266. doi: 10.1007/978-3-030-24258-9_18.

[139] Sibylle Möhle and Armin Biere. “Combining Conflict-Driven Clause Learn-
ing and Chronological Backtracking for Propositional Model Counting.” In:
GCAI 2019. Proceedings of the 5th Global Conference on Artificial Intelligence,
Bozen/Bolzano, Italy, 17–19 September 2019. Ed. by Diego Calvanese and Luca
Iocchi. Vol. 65. EPiC Series in Computing. EasyChair, 2019, pp. 113–126.
doi: 10.29007/vgg4.

[140] Sibylle Möhle, Roberto Sebastiani, and ArminBiere. “OnEnumerating Short
Projected Models.” In: CoRR abs/2110.12924 (2021). arXiv: 2110 . 12924.
url: https://arxiv.org/abs/2110.12924.

[141] Sibylle Möhle, Roberto Sebastiani, and Armin Biere. “Four Flavors of Entail-
ment.” In: Theory and Applications of Satisfiability Testing – SAT 2020 – 23rd In-
ternational Conference, Alghero, Italy, July 3–10, 2020, Proceedings. Ed. by Luca
Pulina and Martina Seidl. Vol. 12178. Lecture Notes in Computer Science.
Springer, 2020, pp. 62–71. doi: 10.1007/978-3-030-51825-7_5.

[142] Paolo Morettin, AndreaPasserini, and Roberto Sebastiani. “Efficient Weight-
ed Model Integration via SMT-Based Predicate Abstraction.” In: Proceed-
ings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI 2017, Melbourne, Australia, August 19–25, 2017. Ed. by Carles Sierra.
ijcai.org, 2017, pp. 720–728. doi: 10.24963/ijcai.2017/100.

[143] Paolo Morettin, Andrea Passerini, and Roberto Sebastiani. “Advanced SMT
techniques for weighted model integration.” In: Artif. Intell. 275 (2019),
pp. 1–27. doi: 10.1016/j.artint.2019.04.003.

[144] António José dos Reis Morgado and João Marques-Silva. Algorithms for
Propositional Model Enumeration and Counting. Tech. rep. 39. INESC-ID, 2005.

[145] António Morgado and João P. Marques-Silva. “Good Learning and Implicit
Model Enumeration.” In: 17th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2005), 14–16 November 2005, Hong Kong, China.
IEEE Computer Society, 2005, pp. 131–136. doi: 10.1109/ICTAI.2005.69.

[146] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. “Chaff: Engineering an Efficient SAT Solver.” In: Proceedings
of the 38th Design Automation Conference, DAC 2001, Las Vegas, NV, USA, June
18–22, 2001. ACM, 2001, pp. 530–535. doi: 10.1145/378239.379017.

https://doi.org/10.1145/288548.288586
https://doi.org/10.1145/288548.288586
https://doi.org/10.1109/ICTAI.2018.00111
https://doi.org/10.1109/ICTAI.2018.00111
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.29007/vgg4
https://arxiv.org/abs/2110.12924
https://arxiv.org/abs/2110.12924
https://doi.org/10.1007/978-3-030-51825-7_5
https://doi.org/10.24963/ijcai.2017/100
https://doi.org/10.1016/j.artint.2019.04.003
https://doi.org/10.1109/ICTAI.2005.69
https://doi.org/10.1145/378239.379017

bibliography 215

[147] Christian J. Muise, Sheila A. McIlraith, J. Christopher Beck, and Eric I. Hsu.
“Fast d-DNNF Compilation with sharpSAT.” In: Abstraction, Reformulation,
and Approximation, Papers from the 2010 AAAI Workshop, Atlanta, Georgia,
USA, July 12, 2010. Vol. WS-10-08. AAAI Workshops. AAAI, 2010. url:
http://aaai.org/ocs/index.php/WS/AAAIW10/paper/view/2069.

[148] Christian J. Muise, Sheila A. McIlraith, J. Christopher Beck, and Eric I. Hsu.
“Dsharp: Fast d-DNNF Compilation with sharpSAT.” In: Advances in Arti-
ficial Intelligence – 25th Canadian Conference on Artificial Intelligence, Canadian
AI 2012, Toronto, ON, Canada, May 28–30, 2012. Proceedings. Ed. by Leila Kos-
seim and Diana Inkpen. Vol. 7310. Lecture Notes in Computer Science.
Springer, 2012, pp. 356–361. doi: 10.1007/978-3-642-30353-1_36.

[149] Alexander Nadel and Vadim Ryvchin. “Chronological Backtracking.” In:
Theory and Applications of Satisfiability Testing – SAT 2018 – 21st International
Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK,July9–12,2018,Proceedings. Ed. by Olaf Beyersdorff and
Christoph M. Wintersteiger. Vol. 10929. Lecture Notes in Computer Sci-
ence. Springer, 2018, pp. 111–121. doi: 10.1007/978-3-319-94144-8_7.

[150] Alexander Nadel and Vadim Ryvchin. “Maple_LCM_Dist_ChronoBT: Fea-
turing Chronological Backtracking.” In: Proceedings of SAT Competition 2018:
Solver and Benchmark Descriptions. Ed. by Marijn Heule, Matti Järvisalo, and
Martin Suda. Vol. B-2018-1. Department of Computer Science Series of
Publications B. University of Helsinki, 2018, p. 29. url: https://helda.
helsinki.fi/handle/10138/237063.

[151] Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. “Preprocessing in
Incremental SAT.” In: Theory and Applications of Satisfiability Testing – SAT
2012 – 15th International Conference, Trento, Italy, June 17–20, 2012. Proceedings.
Ed. by Alessandro Cimatti and Roberto Sebastiani. Vol. 7317. Lecture Notes
in Computer Science. Springer, 2012, pp. 256–269. doi: 10.1007/978-3-64
2-31612-8_20.

[152] Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, and
João Marques-Silva. “Assessing Heuristic Machine Learning Explanations
with Model Counting.” In: Theory and Applications of Satisfiability Testing –
SAT 2019 – 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9–
12, 2019, Proceedings. Ed. by Mikolás Janota and Inês Lynce. Vol. 11628. Lec-
ture Notes in Computer Science. Springer, 2019, pp. 267–278. doi: 10.100
7/978-3-030-24258-9_19.

[153] Aina Niemetz, Mathias Preiner, and Armin Biere. “Turbo-charging Lem-
mas on demand with don’t care reasoning.” In: Formal Methods in Computer-
Aided Design, FMCAD 2014, Lausanne, Switzerland, October 21–24, 2014. IEEE,
2014, pp. 179–186. doi: 10.1109/FMCAD.2014.6987611.

[154] Aina Niemetz, Mathias Preiner, and Armin Biere. “Model-Based API Test-
ing for SMT Solvers.” In: Proceedings of the 15th International Workshop on Sat-
isfiability Modulo Theories, SMT 2017), affiliated with the 29th International Con-
ference on Computer Aided Verification, CAV 2017, Heidelberg, Germany, July
24–28, 2017. Ed. by Martin Brain and Liana Hadarean. 2017, 10 pages.

http://aaai.org/ocs/index.php/WS/AAAIW10/paper/view/2069
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/978-3-319-94144-8_7
https://helda.helsinki.fi/handle/10138/237063
https://helda.helsinki.fi/handle/10138/237063
https://doi.org/10.1007/978-3-642-31612-8_20
https://doi.org/10.1007/978-3-642-31612-8_20
https://doi.org/10.1007/978-3-030-24258-9_19
https://doi.org/10.1007/978-3-030-24258-9_19
https://doi.org/10.1109/FMCAD.2014.6987611

216 bibliography

[155] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. “Solving SAT
and SAT Modulo Theories: From an Abstract Davis-Putnam-Logemann-
Loveland Procedure to DPLL(T).” In: J. ACM 53.6 (2006), pp. 937–977. doi:
10.1145/1217856.1217859.

[156] Chanseok Oh. “Between SAT and UNSAT: The Fundamental Difference in
CDCL SAT.” In: Theory and Applications of Satisfiability Testing – SAT 2015 –
18th International Conference, Austin, TX, USA, September 24–27, 2015, Proceed-
ings. Ed. by Marijn Heule and Sean A. Weaver. Vol. 9340. Lecture Notes in
Computer Science. Springer, 2015, pp. 307–323. doi: 10.1007/978-3-319-
24318-4_23.

[157] Chanseok Oh. “Improving SAT Solvers by Exploiting Empirical Character-
istics of CDCL.” PhD thesis. New York University, Department of Com-
puter Science, 2016.

[158] Muhammad Osama, Anton Wijs, and Armin Biere. “SAT Solving with GPU
Accelerated Inprocessing.” In: Tools and Algorithms for the Construction and
Analysis of Systems – 27th International Conference, TACAS 2021, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2021, Luxembourg City, Luxembourg, March 27–April 1, 2021, Proceedings, Part
I. Ed. by Jan Friso Groote and Kim Guldstrand Larsen. Vol. 12651. Lecture
Notes in Computer Science. Springer, 2021, pp. 133–151. doi: 10.1007/97
8-3-030-72016-2_8.

[159] Umut Oztok and Adnan Darwiche. “On Compiling CNF into Decision-
DNNF.” In: Principles and Practice of Constraint Programming – 20th Interna-
tional Conference, CP 2014, Lyon, France, September 8–12, 2014. Proceedings.
Ed. by Barry O’Sullivan. Vol. 8656. Lecture Notes in Computer Science.
Springer, 2014, pp. 42–57. doi: 10.1007/978-3-319-10428-7_7.

[160] Umut Oztok and Adnan Darwiche. “A Top-Down Compiler for Sentential
Decision Diagrams.” In: Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July
25–31, 2015. Ed. by Qiang Yang and Michael J. Wooldridge. AAAI Press,
2015, pp. 3141–3148. url: http://ijcai.org/Abstract/15/443.

[161] Umut Oztok and Adnan Darwiche. “An Exhaustive DPLL Algorithm for
Model Counting.” In: Journalof Artificial Intelligence Research(JAIR) 62 (2018),
pp. 1–32. doi: 10.1613/jair.1.11201.

[162] Héctor Palacios, Blai Bonet, Adnan Darwiche, and Hector Geffner. “Prun-
ing Conformant Plans by Counting Models on Compiled d-DNNF Repre-
sentations.” In: Proceedings of the Fifteenth International Conference on Auto-
mated Planning and Scheduling (ICAPS 2005), June 5–10 2005, Monterey, Cal-
ifornia, USA. Ed. by Susanne Biundo, Karen L. Myers, and Kanna Rajan.
AAAI, 2005, pp. 141–150. url: http://www.aaai.org/Library/ICAPS/200
5/icaps05-015.php.

[163] Knot Pipatsrisawat and Adnan Darwiche. “New Compilation Languages
Based on Structured Decomposability.” In: Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA,
July 13–17, 2008. Ed. by Dieter Fox and Carla P. Gomes. AAAI Press, 2008,
pp. 517–522. url: http://www.aaai.org/Library/AAAI/2008/aaai08-082
.php.

https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1007/978-3-319-24318-4_23
https://doi.org/10.1007/978-3-319-24318-4_23
https://doi.org/10.1007/978-3-030-72016-2_8
https://doi.org/10.1007/978-3-030-72016-2_8
https://doi.org/10.1007/978-3-319-10428-7_7
http://ijcai.org/Abstract/15/443
https://doi.org/10.1613/jair.1.11201
http://www.aaai.org/Library/ICAPS/2005/icaps05-015.php
http://www.aaai.org/Library/ICAPS/2005/icaps05-015.php
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php

bibliography 217

[164] David A. Plaisted and Steven Greenbaum. “A Structure-Preserving Clause
Form Translation.” In: J. Symb. Comput. 2.3 (1986), pp. 293–304. doi: 10.10
16/S0747-7171(86)80028-1.

[165] Kavita Ravi and Fabio Somenzi. “Minimal Assignments for Bounded Mod-
el Checking.” In: Tools and Algorithms for the Construction and Analysis of
Systems, 10th International Conference, TACAS 2004, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona,
Spain, March 29–April 2, 2004, Proceedings. Ed. by Kurt Jensen and Andreas
Podelski. Vol. 2988. Lecture Notes in Computer Science. Springer, 2004,
pp. 31–45. doi: 10.1007/978-3-540-24730-2_3.

[166] John Alan Robinson. “A Machine-Oriented Logic Based on the Resolution
Principle.” In: J. ACM 12.1 (1965), pp. 23–41. doi: 10.1145/321250.321253.

[167] Dan Roth. “On the Hardness of Approximate Reasoning.” In: Artif. Intell.
82.1–2 (1996), pp. 273–302. doi: 10.1016/0004-3702(94)00092-1.

[168] Marko Samer and Stefan Szeider. “Backdoor Sets of Quantified Boolean
Formulas.” In: J. Autom. Reason. 42.1 (2009), pp. 77–97. doi: 10.1007/s108
17-008-9114-5.

[169] Marko Samer and Stefan Szeider. “Fixed-Parameter Tractability.” In: Hand-
book of Satisfiability. Ed. by Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh. Vol. 185. Frontiers in Artificial Intelligence and Applica-
tions. IOS Press, 2009, pp. 425–454. doi: 10.3233/978-1-58603-929-5-425.

[170] Marko Samer and Stefan Szeider. “Algorithms for propositional model
counting.” In: J. Discrete Algorithms 8.1 (2010), pp. 50–64. doi: 10.1016

/j.jda.2009.06.002.

[171] Marko Samer and Stefan Szeider. “Fixed-Parameter Tractability.” In: Hand-
book of Satisfiability. Ed. by Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh. Vol. 336. Frontiers in Artificial Intelligence and Applica-
tions. IOS Press, 2021, pp. 693–736. doi: 10.3233/FAIA201000.

[172] Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and Toniann
Pitassi. “Combining Component Caching and Clause Learning for Effec-
tive Model Counting.” In: SAT 2004 – The Seventh International Conference
on Theory and Applications of Satisfiability Testing, 10–13 May 2004, Vancouver,
BC, Canada, Online Proceedings. 2004. url: http://www.satisfiability.
org/SAT04/programme/21.pdf.

[173] Tian Sang, Paul Beame, and Henry A. Kautz. “Heuristics for Fast Exact
Model Counting.” In: Theory and Applications of Satisfiability Testing, 8th In-
ternational Conference, SAT 2005, St. Andrews, UK, June 19–23, 2005, Proceed-
ings. Ed. by Fahiem Bacchus and Toby Walsh. Vol. 3569. Lecture Notes in
Computer Science. Springer, 2005, pp. 226–240. doi: 10.1007/11499107_17.

[174] Tian Sang, Paul Beame, and Henry A. Kautz. “Performing Bayesian Infer-
ence by Weighted Model Counting.” In: Proceedings of the Twentieth National
Conference on Artificial Intelligence and the Seventeenth Innovative Applications
of Artificial Intelligence Conference, July 9–13, 2005, Pittsburgh, Pennsylvania,
USA. Ed. by Manuela M. Veloso and Subbarao Kambhampati. AAAI Press
/ The MIT Press, 2005, pp. 475–482. url: http://www.aaai.org/Library/
AAAI/2005/aaai05-075.php.

https://doi.org/10.1016/S0747-7171(86)80028-1
https://doi.org/10.1016/S0747-7171(86)80028-1
https://doi.org/10.1007/978-3-540-24730-2_3
https://doi.org/10.1145/321250.321253
https://doi.org/10.1016/0004-3702(94)00092-1
https://doi.org/10.1007/s10817-008-9114-5
https://doi.org/10.1007/s10817-008-9114-5
https://doi.org/10.3233/978-1-58603-929-5-425
https://doi.org/10.1016/j.jda.2009.06.002
https://doi.org/10.1016/j.jda.2009.06.002
https://doi.org/10.3233/FAIA201000
http://www.satisfiability.org/SAT04/programme/21.pdf
http://www.satisfiability.org/SAT04/programme/21.pdf
https://doi.org/10.1007/11499107_17
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php

218 bibliography

[175] Sergej Scheck, Alexandre Niveau, and Bruno Zanuttini. “Knowledge Com-
pilation for Nondeterministic Action Languages.” In: Proceedings of the Thir-
ty-First International Conference on Automated Planning and Scheduling, ICAPS
2021, Guangzhou, China (virtual), August 2–13, 2021. Ed. by Susanne Biundo,
Minh Do, Robert Goldman, Michael Katz, Qiang Yang, and Hankz Hankui
Zhuo. AAAI Press, 2021, pp. 308–316. url: https://ojs.aaai.org/index.
php/ICAPS/article/view/15975.

[176] Roberto Sebastiani. “Lazy Satisfiability Modulo Theories.” In: Journal on
Satisfiability, Boolean Modeling and Computation 3.3–4 (2007), pp. 141–224.
doi: 10.3233/sat190034.

[177] Roberto Sebastiani. “Are You Satisfied by This Partial Assignment?” In:
CoRR abs/2003.04225 (2020). arXiv: 2003.04225. url: https://arxiv.org/
abs/2003.04225.

[178] Bart Selman and Henry A. Kautz. “Knowledge Compilation and Theory
Approximation.” In: J. ACM 43.2 (1996), pp. 193–224. doi: 10.1145/22664
3.226644.

[179] Shubham Sharma, Subhajit Roy, MateSoos, and KuldeepS.Meel. “GANAK:
A Scalable Probabilistic Exact Model Counter.” In: Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence,IJCAI2019, Macao,
China, August 10–16, 2019. Ed. by Sarit Kraus. ijcai.org, 2019, pp. 1169–1176.
doi: 10.24963/ijcai.2019/163.

[180] Shuo Sheng and Michael S. Hsiao. “Efficient Preimage Computation Us-
ing A Novel Success-Driven ATPG.” In: 2003 Design, Automation and Test in
Europe Conference and Exposition (DATE 2003), 3–7 March 2003, Munich, Ger-
many. IEEE Computer Society, 2003, pp. 10822–10827. doi: 10.1109/DATE.2
003.10125.

[181] Friedrich Slivovsky and Stefan Szeider. “Model Counting for Formulas of
Bounded Clique-Width.” In: Algorithms and Computation – 24th International
Symposium, ISAAC 2013, Hong Kong, China, December 16–18, 2013, Proceed-
ings. Ed. by Leizhen Cai, Siu-Wing Cheng, and Tak Wah Lam. Vol. 8283.
Lecture Notes in Computer Science. Springer, 2013, pp. 677–687. doi: 10.1
007/978-3-642-45030-3_63.

[182] Friedrich Slivovsky and Stefan Szeider. “A Faster Algorithm for Proposi-
tional Model Counting Parameterized by Incidence Treewidth.” In: Theory
and Applications of Satisfiability Testing – SAT 2020 – 23rd International Confer-
ence, Alghero, Italy, July 3–10, 2020, Proceedings. Ed. by Luca Pulina and Mar-
tina Seidl. Vol. 12178. Lecture Notes in Computer Science. Springer, 2020,
pp. 267–276. doi: 10.1007/978-3-030-51825-7_19.

[183] Mate Soos and Kuldeep S. Meel. “BIRD: Engineering an Efficient CNF-
XOR SAT Solver and Its Applications to Approximate Model Counting.”
In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2019, Honolulu, Hawaii, USA, January 27–February 1, 2019. AAAI
Press, 2019, pp. 1592–1599. doi: 10.1609/aaai.v33i01.33011592.

https://ojs.aaai.org/index.php/ICAPS/article/view/15975
https://ojs.aaai.org/index.php/ICAPS/article/view/15975
https://doi.org/10.3233/sat190034
https://arxiv.org/abs/2003.04225
https://arxiv.org/abs/2003.04225
https://arxiv.org/abs/2003.04225
https://doi.org/10.1145/226643.226644
https://doi.org/10.1145/226643.226644
https://doi.org/10.24963/ijcai.2019/163
https://doi.org/10.1109/DATE.2003.10125
https://doi.org/10.1109/DATE.2003.10125
https://doi.org/10.1007/978-3-642-45030-3_63
https://doi.org/10.1007/978-3-642-45030-3_63
https://doi.org/10.1007/978-3-030-51825-7_19
https://doi.org/10.1609/aaai.v33i01.33011592

bibliography 219

[184] Ofer Strichman. “Tuning SAT Checkers for Bounded Model Checking.” In:
Computer Aided Verification, 12th International Conference, CAV 2000, Chicago,
IL, USA, July 15–19, 2000, Proceedings. Ed. by E. Allen Emerson and A. Pras-
ad Sistla. Vol. 1855. Lecture Notes in Computer Science. Springer, 2000,
pp. 480–494. doi: 10.1007/10722167_36.

[185] Ofer Strichman. “Pruning Techniques for the SAT-Based Bounded Model
Checking Problem.” In: Correct Hardware Design and Verification Methods,
11th IFIP WG 10.5 Advanced Research Working Conference, CHARME 2001, Liv-
ingston, Scotland, UK, September 4–7, 2001, Proceedings. Ed. by Tiziana Mar-
garia and Thomas F. Melham. Vol. 2144. Lecture Notes in Computer Sci-
ence. Springer, 2001, pp. 58–70. doi: 10.1007/3-540-44798-9_4.

[186] Sathiamoorthy Subbarayan, LucasBordeaux, and Youssef Hamadi. “Knowl-
edge Compilation Properties of Tree-of-BDDs.” In: Proceedings of the Twenty-
Second AAAI Conference on Artificial Intelligence, July 22–26, 2007, Vancouver,
British Columbia, Canada. AAAI Press, 2007, pp. 502–507. url: http://www.
aaai.org/Library/AAAI/2007/aaai07-079.php.

[187] Allison Sullivan, Darko Marinov, and Sarfraz Khurshid. “Solution Enumer-
ation Abstraction: A Modeling Idiom to Enhance a Lightweight Formal
Method.” In: Formal Methods and Software Engineering – 21st International Con-
ference on Formal Engineering Methods, ICFEM 2019, Shenzhen, China, Novem-
ber 5–9, 2019, Proceedings. Ed. by Yamine Aït Ameur and Shengchao Qin.
Vol. 11852. Lecture Notes in Computer Science. Springer, 2019, pp. 336–
352. doi: 10.1007/978-3-030-32409-4_21.

[188] Peter van der Tak, Antonio Ramos, and Marijn Heule. “Reusing the Assign-
ment Trail in CDCL Solvers.” In: J. Satisf. Boolean Model. Comput. 7.4 (2011),
pp. 133–138. doi: 10.3233/sat190082.

[189] Marc Thurley. “sharpSAT – Counting Models with Advanced Component
Caching and Implicit BCP.” In: Theory and Applications of Satisfiability Test-
ing – SAT 2006, 9th International Conference, Seattle, WA, USA, August 12–15,
2006, Proceedings. Ed. by Armin Biere and Carla P. Gomes. Vol. 4121. Lec-
ture Notes in Computer Science. Springer, 2006, pp. 424–429. doi: 10.100
7/11814948_38.

[190] Abraham Temesgen Tibebu and Görschwin Fey. “Augmenting All Solution
SAT Solving for Circuits with Structural Information.” In: 21st IEEE Inter-
national Symposium on Design and Diagnostics of Electronic Circuits & Systems,
DDECS 2018, Budapest, Hungary, April 25–27, 2018. IEEE, 2018, pp. 117–122.
doi: 10.1109/DDECS.2018.00028.

[191] Takahisa Toda and Takehide Soh. “Implementing Efficient All Solutions
SAT Solvers.” In: ACM J. Exp. Algorithmics 21.1 (2016), 1.12:1–1.12:44. doi:
10.1145/2975585.

[192] Grigori Tseitin. “On the complexity of derivation in propositional calcu-
lus.” In: Studies in Constructive Mathematics and Mathematical Logic (1968),
pp. 115–125.

[193] Melvin M. Vopson. “Estimation of the information contained in the visible
matter of the universe.” In: AIP Advances 11.10 (2021), p. 105317. doi: 10.1
063/5.0064475. eprint: https://doi.org/10.1063/5.0064475.

https://doi.org/10.1007/10722167_36
https://doi.org/10.1007/3-540-44798-9_4
http://www.aaai.org/Library/AAAI/2007/aaai07-079.php
http://www.aaai.org/Library/AAAI/2007/aaai07-079.php
https://doi.org/10.1007/978-3-030-32409-4_21
https://doi.org/10.3233/sat190082
https://doi.org/10.1007/11814948_38
https://doi.org/10.1007/11814948_38
https://doi.org/10.1109/DDECS.2018.00028
https://doi.org/10.1145/2975585
https://doi.org/10.1063/5.0064475
https://doi.org/10.1063/5.0064475
https://doi.org/10.1063/5.0064475

220 bibliography

[194] Wenxi Wang, MuhammadUsman, AlyasAlmaawi, Kaiyuan Wang, Kuldeep
S. Meel, and Sarfraz Khurshid. “A Study of Symmetry Breaking Predicates
and Model Counting.” In: Tools and Algorithms for the Construction and Anal-
ysis of Systems – 26th International Conference, TACAS 2020, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25–30, 2020, Proceedings, Part I. Ed. by Armin Biere and
David Parker. Vol. 12078. Lecture Notes in Computer Science. Springer,
2020, pp. 115–134. doi: 10.1007/978-3-030-45190-5_7.

[195] Ingo Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987. url:
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/.

[196] Wei Wei and Bart Selman. “A New Approach to Model Counting.” In: The-
ory and Applications of Satisfiability Testing, 8th International Conference, SAT
2005, St. Andrews, UK, June 19–23, 2005, Proceedings. Ed. by Fahiem Bacchus
and Toby Walsh. Vol. 3569. Lecture Notes in Computer Science. Springer,
2005, pp. 324–339. doi: 10.1007/11499107_24.

[197] Christoph Weidenbach. “Automated Reasoning Building Blocks.” In: Cor-
rect System Design. Vol. 9360. Lecture Notes in Computer Science. Springer,
2015, pp. 172–188.

[198] Christoph Wernhard. “The PIE Environment for First-Order-Based Prov-
ing, Interpolating and Eliminating.” In: Proceedings of the 5th Workshop on
Practical Aspects of Automated Reasoning co-located with International Joint Con-
ference on Automated Reasoning (IJCAR 2016), Coimbra, Portugal, July 2nd, 2016.
Ed. by Pascal Fontaine, Stephan Schulz, and Josef Urban. Vol. 1635. CEUR
Workshop Proceedings. CEUR-WS.org, 2016, pp. 125–138. url: http://

ceur-ws.org/Vol-1635/paper-11.pdf.

[199] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. “SWI-
Prolog.” In: Theory and Practice of Logic Programming (TPLP) 12.1–2 (2012),
pp. 67–96. doi: 10.1017/S1471068411000494.

[200] Fan Xiao, Mao Luo, Chu-Min Li, Felip Manyà, and Zhipeng Lü. “MapleLRB
LCM, Maple LCM, Maple LCM Dist, MapleLRB LCMoccRestart and Glu-
cose-3.0+width in SAT Competition 2017.” In: Proceedings of SAT Compe-
tition 2017: Solver and Benchmark Descriptions. Vol. B-2017-1. Publications
Series B. Department of Computer Science, University of Helsinki, 2017,
pp. 22–23. url: https://researchportal.helsinki.fi/files/91476978
/sc2017_proceedings.pdf.

[201] Jiayi Yang, Wenxi Wang, Darko Marinov, and Sarfraz Khurshid. “AlloyMC:
Alloy meets model counting.” In: ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Virtual Event, USA, November 8–13, 2020. Ed. by Prem Devanbu,
Myra B. Cohen, and Thomas Zimmermann. ACM, 2020, pp. 1541–1545.
doi: 10.1145/3368089.3417938.

[202] Erik Peter Zawadzki, André Platzer, and Geoffrey J. Gordon. “A Gener-
alization of SAT and #SAT for Robust Policy Evaluation.” In: IJCAI 2013,
Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3–9, 2013. Ed. by Francesca Rossi. IJCAI/AAAI, 2013,
pp. 2583–2590. url: http://www.aaai.org/ocs/index.php/IJCAI/IJCAI1
3/paper/view/6838.

https://doi.org/10.1007/978-3-030-45190-5_7
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/
https://doi.org/10.1007/11499107_24
http://ceur-ws.org/Vol-1635/paper-11.pdf
http://ceur-ws.org/Vol-1635/paper-11.pdf
https://doi.org/10.1017/S1471068411000494
https://researchportal.helsinki.fi/files/91476978/sc2017_proceedings.pdf
https://researchportal.helsinki.fi/files/91476978/sc2017_proceedings.pdf
https://doi.org/10.1145/3368089.3417938
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6838
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6838

bibliography 221

[203] Christoph Zengler and Wolfgang Küchlin. “Boolean Quantifier Elimination
for Automotive Configuration – A Case Study.” In: Formal Methods for Indus-
trial Critical Systems – 18th International Workshop, FMICS 2013, Madrid, Spain,
September 23–24, 2013. Proceedings. Ed. by Charles Pecheur and Michael
Dierkes. Vol. 8187. Lecture Notes in Computer Science. Springer, 2013,
pp. 48–62. doi: 10.1007/978-3-642-41010-9_4.

[204] Lintao Zhang. “Solving QBF by Combining Conjunctive and Disjunctive
Normal Forms.” In: Proceedings, The Twenty-First National Conference on Ar-
tificial Intelligence and the Eighteenth Innovative Applications of Artificial Intel-
ligence Conference, July 16–20, 2006, Boston, Massachusetts, USA. AAAI Press,
2006, pp. 143–150. url: http://www.aaai.org/Library/AAAI/2006/aaai0
6-023.php.

[205] Shengjia Zhao, Sorathan Chaturapruek, Ashish Sabharwal, and Stefano Er-
mon. “Closing the Gap Between Short and Long XORs for Model Count-
ing.” In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12–17, 2016, Phoenix, Arizona, USA. Ed. by Dale Schuurmans and
Michael P. Wellman. AAAI Press, 2016, pp. 3322–3329. url: http://www.
aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12546.

https://doi.org/10.1007/978-3-642-41010-9_4
http://www.aaai.org/Library/AAAI/2006/aaai06-023.php
http://www.aaai.org/Library/AAAI/2006/aaai06-023.php
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12546
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12546

I N D E X

decs, 29

units(), 29

Abstract
#DPLL, 48

Dual #DPLL, 50

All-SAT, 37

assertion level, 31

assignment
falsifying, 27

satisfying, 27

total, 27

backjumping, 31

backtracking
chronological, 29

non-chronological, 30, 31

block, 96

blocking
clause, 37

blocking clause, 50

chronological backtracking, 29

clause, 27

CNF, 27

combined formula pair, 65

complement of a literal, 29

conflict, 29

clause, 31

level, 32

conflict level, 97, 119

conflict-driven
backjumping, 30, 31

clause learning, 30

conflicting clause, 29, 95, 119

conjunctive normal form, 27

counter-model, 27

cube, 37, 117

DAG, 21

Davis-Putnam-Logemann-Loveland
algorithm, 28

decision, 29

level function, 95, 118, 137

literal, 29

literal (chronological CDCL), 96

rule, 29

decomposability, 21

Decomposable Negation Normal
Form, 21

determinism, 21

Disjoint Sum-of-Products (DSOP),
117

disjunctive normal form, 37

DNF, 37

DNNF, 21

DPLL algorithm, 28

dual
assignment, 64

formula, 64

representation of a formula, 65

variables, 64

duality property, 65

empty
clause, 28

formula, 28

entailing assignment, 137

extension
total, 33

falsifying
assignment, 27

flatness, 21

flip decision, 29

flipped literal, 64

formula
satisfiable, 27

unsatisfiable, 27

in-order literal, 99, 119

inputs, 63

interpretation, 46

irrelevant input
assignment, 63

variables, 63

learnt clause, 31

literal, 27

model, 27, 46, 95, 119

223

224 index

count, 46, 119

partial, 33

shrinking, 39

total, 33

Negation Normal Form, 21

NNF, 21

non-chronological backtracking, 31

non-chronological backtracking, 30

number of projected satisfying
assignments, 63

out-of-order literal, 96, 118

partial
assignment, 64, 95, 119, 137

interpretation, 46

model, 29, 33, 46

pending
models, 117, 120

search space, 117, 119

Plaisted-Greenbaum transformation,
27

primal
assignment, 64

formula, 64

variables, 64

projected model counting, 61

projection, 41

propagated literal, 28

propagation literal, 28

propositional
formula, 27

variable, 27

reason, 29

reduct, 47

relevant input
variables, 63

relevant input
assignment, 63

residual, 28, 64, 95, 119, 137

SAT, 27

satisfiability problem, 27

satisfiability-preserving
transformation, 27

satisfiable formula, 27

satisfying
assignment, 27

semantically equivalent formulae, 47

shared variables, 65

shrink
models, 39

simple-conjunction, 21

simple-disjunction, 21

slice, 96, 118

smoothness, 21

total
assignment, 27, 63, 95, 119, 137

extension, 33

interpretation, 46

model, 33, 46

trail, 28, 64, 95, 117, 137

transformation
Plaisted-Greenbaum, 27

satisfiability-preserving, 27

Tseitin, 27

truth value of a formula, 27

Tseitin transformation, 27

Tseitin variable, 27

unit
clause, 28

literal, 28

propagation rule, 28

unsatisfiable formula, 27

working
formula, 48

interpretation, 48

number of models, 48

colophon

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede. The style was inspired by Robert Bringhurst’s seminal
book on typography “The Elements of Typographic Style”. classicthesis is available
for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Final Version as of June 2, 2022 (classicthesis version 4.2).

https://bitbucket.org/amiede/classicthesis/

	Dedication
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	1 Motivation and Overview
	2 Outline of the Thesis
	3 Contributions
	3.1 Paper 1: An Abstract Dual Propositional Model Counter
	3.2 Paper 2: Dualizing Projected Model Counting
	3.3 Paper 3: Backing Backtracking
	3.4 Paper 4: Combining Conflict-Driven Clause Learning and Chronological Backtracking for Propositional Model Counting
	3.5 Paper 5: Four Flavors of Entailment
	3.6 Paper 6: On Enumerating Short Projected Models

	4 Topics Beyond the Scope of this Thesis
	4.1 Weighted Model Counting
	4.2 Structure-Aware Model Counting
	4.3 Approximate Model Counting
	4.4 Knowledge Compilation
	4.5 Preprocessing and Inprocessing

	Background
	5 Propositional Satisfiability
	6 SAT-Based Exact Unweighted Model Counting
	7 SAT-Based Irredundant Model Enumeration
	8 Projection

	Dual Projected Model Counting
	9 Paper 1: An Abstract Dual Propositional Model Counter
	9.1 Introduction
	9.2 Preliminaries
	9.2.1 Propositional Satisfiability and Model Counting
	9.2.2 The Davis Putnam Logemann Loveland Procedure
	9.2.3 Counting Models by Means of the Davis Putnam Procedure
	9.2.4 An Abstract Framework for Propositional Model Counting

	9.3 Counting Models by Taking into Account the Negated Formula
	9.4 Abstract Dual #DPLL
	9.4.1 States and Transition Relations
	9.4.2 Rules
	9.4.3 Unit Propagation
	9.4.4 Soundness

	9.5 Example
	9.6 Conclusion and Future Work

	10 Discussion of Paper 1
	10.1 Main Contributions
	10.2 Correlation of the Residuals
	10.3 Model Counting Using Only the Negated Formula
	10.4 Computing Models

	11 Paper 2: Dualizing Projected Model Counting
	11.1 Introduction
	11.2 Preliminaries
	11.3 Duality
	11.4 Calculus
	11.5 Implementation
	11.6 Experiments
	11.7 Related Work
	11.8 Conclusion

	12 Discussion of Paper 2
	12.1 Main Contributions
	12.2 Decision Strategy
	12.3 Flipping and Discounting by an Example
	12.4 Conflict-Driven Clause Learning in the Dual Formula
	12.5 Propagating Input Literals in the Dual Formula
	12.6 Dual Blocking Clauses
	12.7 Where Our Dual Approach Really Wins

	13 DualCountPro – a Dual Model Counter in Prolog

	Chronological Conflict-Driven Clause Learning for Propositional Model Counting
	14 Paper 3: Backing Backtracking
	14.1 Introduction
	14.2 Preliminaries
	14.3 Generalizing CDCL with Chronological Backtracking
	14.4 Calculus
	14.5 Proofs
	14.6 Algorithm
	14.7 Implementation
	14.8 Experiments
	14.9 Conclusion

	15 Discussion of Paper 3
	15.1 Main Contributions
	15.2 Conflict at Lower Decision Level
	15.3 The Impact of Reusing the Trail

	16 Paper 4: Combining Conflict-Driven Clause Learning and Chronological Backtracking for Propositional ModelCounting
	16.1 Introduction
	16.2 Preliminaries
	16.3 Counting via Enumeration with Chronological CDCL
	16.4 Calculus
	16.5 Proofs
	16.5.1 Invariants in Non-Terminal States
	16.5.2 Equivalence and Model Count
	16.5.3 Progress
	16.5.4 Termination

	16.6 Conclusion

	17 Discussion of Paper 4
	17.1 Main Contributions
	17.2 The Pending Search Space by an Example
	17.3 Towards an Alternative Termination Condition

	Partial Model Enumeration
	18 Paper 5: Four Flavors of Entailment
	18.1 Introduction
	18.2 Preliminaries
	18.3 Early Pruning for Projected Model Enumeration
	18.4 Testing Entailment
	18.5 Formalization
	18.6 Conclusion

	19 Discussion of Paper 5
	19.1 Main Contributions
	19.2 Model Detection

	20 Paper 6: On Enumerating Short Projected Models
	20.1 Introduction
	20.2 Overview of Contributions
	20.2.1 Correctness with Respect to Model Enumeration
	20.2.2 Model Shrinking
	20.2.3 Irredundant Model Enumeration Under Projection
	20.2.4 Redundant Model Enumeration Under Projection

	20.3 Preliminaries
	20.3.1 Propositional Satisfiability (SAT)
	20.3.2 Conflict-Driven Clause Learning
	20.3.3 Incremental SAT Solving
	20.3.4 Projection
	20.3.5 Dual Representation of a Formula

	20.4 Soundness and Completeness
	20.5 Dual Reasoning for Model Shrinking
	20.6 Dual Encoding of Blocking Clauses
	20.7 Projected Model Enumeration Without Repetition
	20.7.1 Main Algorithm
	20.7.2 Unit Propagation
	20.7.3 Conflict Analysis

	20.8 Formalizing Projected Irredundant Model Enumeration
	20.8.1 Calculus
	20.8.2 Example
	20.8.3 Proofs
	20.8.4 Generalization to Partial Model Detection

	20.9 Conflict-Driven Clause Learning for Redundant All-SAT
	20.10 Projected Redundant Model Enumeration
	20.10.1 Algorithm and Calculus
	20.10.2 Example
	20.10.3 Proofs
	20.10.4 Generalization

	20.11 Conclusion

	21 Discussion of Paper 6
	21.1 Main Contributions
	21.2 Strong Completeness in Partial Model Enumeration
	21.3 Learnt Clauses in Redundant Model Enumeration

	Conclusion
	22 Discussion
	23 Summary
	24 Future Work
	Bibliography
	Index
	Index
	Colophon

