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Abstract. In alpine regions, traffic infrastructure may be endangered
by snow avalanches. If not protected by physical structures, roads need
to be temporarily closed in order to prevent fatal accidents. For assessing
the danger of avalanches, local avalanche services use, amongst others,
meteorological data measured on a daily basis as well as expert knowl-
edge about avalanche activity. Based on this data, a system for decision
support in avalanche warning has been developed. Feasible models were
trained using Balanced Random Forests and Weighted Random Forests,
yielding a performance useful for human experts. The results are dis-
cussed and options for further improvements are pointed out.
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1 Introduction

Snow avalanches pose a serious threat in alpine regions. They may cause signifi-
cant damages and fatal accidents. Therefore, local avalanche services responsible
for avalanche safety in communities and for traffic infrastructure have been es-
tablished in alpine countries. Their task is to protect people from the impact
of snow avalanches by temporary measures, like the closing of roads, ordering
people to stay in buildings, evacuation, or artificial avalanche triggering [20].
Thus, assessing the local risk of snow avalanches is of vital importance, and re-
quires expert knowledge, intuition, and process understanding. Decision support
systems such as NXD2000 [9, 10] based on the method of nearest neighbors [4]
help local avalanche forecasters to base their decisions in addition to their knowl-
edge and experience on more objective criteria. Precipitation (new snow or rain),
wind, air temperature and solar radiation are the main factors influencing the
formation of avalanches. Local avalanche forecasters base their daily judgment
of avalanche danger on a careful analysis of meteorological variables and snow-
pack properties influencing the stability of the snowpack. This assessment relies



heavily on a sound understanding of the physical processes in the snowpack but
also on experience and comparisons with similar situations observed in the past.
When using NXD2000, the ten days being most similar to the current situation
and the avalanche activity that occurred within the corresponding time slots are
selected by the program and presented to the user. The output of the model
provides additional evidence that a similar avalanche activity might take place
in a specific situation.

Classification and regression trees [3] were applied in [18] for forecasting
large and infrequent snow avalanches. The work reported in [18] concentrated
on one single avalanche path. In [12], classification trees were adopted for fore-
casting avalanches in coastal Alaska; the region accounted for comprised over
100 avalanche paths, and prior to modeling, variable selection was performed.
In [17], wet-snow avalanches were predicted using classification trees and Ran-
dom Forests [2]. In [12, 17, 18], the training data were selected using statistical
methods.

The purpose of the work reported here is to develop a decision support system
for assessing the local hazard of snow avalanches, based on the data collected
within NXD2000. As local knowledge is essential and generalization to other
locations is very difficult, the system has been developed for a specific area, the
Canton of Glarus in Switzerland.

A second objective of our work was to investigate the suitability of Random
Forests and variants thereof for modeling a decision support system for snow
avalanche warning. Since Random Forests [2], which are used in [17], are suited
for classification problems where the dependencies between the variables are un-
known and non-linear, they are a candidate for modeling our system. However,
in the given data set provided by NXD2000, avalanches represent rare events,
and Random Forests are biased towards the majority class [5]. Due to the class
imbalance, bootstrap samples drawn for decision tree construction may contain
few or no examples from the minority class, hence the resulting decision tree
will perform poorly on examples from the minority class [5]. Therefore, we em-
ploy two variants of Random Forests, Balanced Random Forest and Weighted
Random Forest [5], and study their suitability for our application.

A third goal of our work is the elaboration of quality measures for the ob-
tained models from the point of view of the avalanche service which is in charge
of assessing the local avalanche danger. While we also use the quality measures
employed in the work cited above, we propose to use positive and negative predic-
tive values as additional quality measures for snow avalanche warning, providing
an assessment of the forecast probability. It turned out that these measures are
particularly useful for the human experts at the avalanche service of the Canton
of Glarus.

The rest of this paper is organized as follows: In Section 2, we briefly ad-
dress the problem of forecasting rare events. In Section 3, we define six different
measures for assessing the quality of models and discuss their relevance for our
application scenario. The weather and snow data being used and the variables
derived from these data are presented in Section 4. The resulting models ob-



tained by employing Balanced Random Forest and Weighted Random Forest
are described and discussed in Section 5 and Section 6. In Section 7 we conclude
and point out further work.

2 Forecasting Rare Events

In the given data covering more than 40 years, avalanches represent rare events
(i.e. 53 days with avalanches, but 6889 without an avalanche). A model predicting
always the negative class, i.e. non-avalanches, achieves a high overall accuracy.
However, it would be of no use as a decision support for avalanche warning, since
the important cases are the positive ones, i.e. the avalanche days. Fatal accidents
may be the consequence of roads not being closed due to a missed avalanche
forecast. Therefore, with rare events, the overall accuracy of a classifier is not
an adequate quality criterion [19].

Sampling as well as cost-sensitive learning are possible solutions to the prob-
lem of predicting rare events. Undersampling the negative class may result in
the loss of important information, while oversampling the positive class may
introduce duplicates of positive examples into the training data. This, in turn,
bears the risk of learning specific examples [19].

When taking measures such as temporary road closures, resulting costs have
to be considered. They consist of business interruption costs for the regional
economy due to road closure as well as the efforts for road closure and opening
and clearance of avalanche debris on the road. In the case of false negative
forecasts, costs may be significant due to damages and fatal accidents. Costs
need not only be monetary: With every false prediction, the avalanche service
looses credibility. For this reason, it is not only important to achieve a low
number of false negatives, but the number of false positives has to be low, too.

With cost-sensitive learning, different forecast types are assigned different
costs. An ideal classifier minimizes the associated cost function [6]. Costs are
case-specific and their estimation is difficult. Long-time damage statistics allow
for a quantitative estimation of costs. Since appropriate data were not available
in our application, a qualitative estimation of costs from a regional economic view
was conducted. The following assumptions apply: With a positive forecast, the
affected road section is closed. Considered costs include damage to persons and
property and business interruption costs as well as loss of credibility in case of
unnecessary closure; hence, costs for correct predictions were set to 0. According
to the remarks made in the last paragraph, the costs for false negatives have to
be higher than the costs for false positives. Cost-sensitivity can be achieved by
assigning different weights to the positive and negative class [6].

In [5], variants of Random Forests [2] suited for the classification of rare
events were proposed.

2.1 Balanced Random Forest (BRF)

Balanced Random Forest approaches the problem of class imbalance by con-
structing each decision tree from equally-sized bootstrap samples from the nega-



tive and the positive class. This ensures that positive and negative examples are
both included in the training data set. The trees are grown using the CART al-
gorithm [3] without pruning. The determination of the best split in each node is
carried out analogously to Random Forests by testing a previously fixed number
of randomly chosen variables.

2.2 Weighted Random Forest (WRF)

Weighted Random Forest implements cost-sensitive learning by assigning weights
to classes. By assigning a higher weight to the positive class, misclassification
costs for positive examples are higher and positive examples therefore gain weight
in the training process.

3 Model Assessment

Forecasting an avalanche can be considered as a classification problem. The po-
sitive class contains the avalanche days, and in this work, it is assigned the value
1. The negative class contains the non-avalanche days and is assigned the value
0. The results can be represented in contingency tables as shown in Fig. 3.

Observed

0 1

0 TN FN
1 FP TP

Predicted

Fig. 1. Contingency table for event forecasting: TN denotes the number of true neg-
ative forecasts, FN the number of false negatives. The number of false positive and
true positive forecasts are denoted by FP and TP , respectively.

The number of true negative forecasts is abbreviated as TN and denotes the
number of cases in which neither an avalanche was predicted nor an avalanche oc-
curred. Accordingly, the number of correctly predicted avalanches is abbreviated
as TP . The number of false negatives refers to the number of missed avalanches
and is abbreviated as FN , the number of false positive forecasts is denoted by
FP . They refer to the situations in which an avalanche occurred when there was
none predicted and vice versa, respectively. For model assessment, the following
quality criterions were applied:

Sensitivity (Probability of Detection):

POD =
TP

TP + FN
(1)



Specificity (Probability of Non-Event):

PON =
TN

TN + FP
(2)

False Alarm Ratio:

FAR =
FP

FP + TP
(3)

True Skill Statistic:

TSS =
TP

TP + FN
− FP

FP + TN
(4)

Positive Predictive Value:

PPV =
TP

TP + FP
= 1 − FAR (5)

Negative Predictive Value:

NPV =
TN

TN + FN
(6)

Amongst these, the positive predictive value and the negative predictive value
[14] are most informative regarding the operational use of a model used for deci-
sion support in our application scenario. Given a negative forecast, the negative
predictive value is the probability for this forecast being right. Given a positive
forecast, the positive predictive value is the probability for an avalanche event.

The ideal classifier shows a high sensitivity as well as a high specificity. But
these quality criterions do not allow for an assessment of the forecast. Obviously,
high sensitivity and high specificity result in high positive and negative predictive
values.

The probability of detection, the probability of a non-event, the false alarm
ratio as well as the true skill statistic are established quality measures for model
assessment in avalanche forecasting and are adopted in [12, 17, 18].

4 Data

The Canton of Glarus is located in the eastern part of Switzerland and is char-
acterized by high mountains and steep slopes. In this work, we focused on the
alpine valley Kleintal situated in the southeast of the Canton of Glarus. The
valley floor of the Kleintal is gently inclined, its elevation ranging from over 600
m.a.s.l. to over 1000 m.a.s.l. The starting zone of a snow avalanche may be situ-
ated up to 1700 m above the valley floor and may therefore endanger the main
road leading through the valley. The data consist of meteorological variables
measured daily in the early morning as well as avalanche information between
January 1st, 1972 and April 30th, 2013.

The measures were collected in Elm at 958 m.a.s.l. and at Risiboden, a loca-
tion situated 2.5 km from Elm at an elevation of 1690 m.a.s.l. They comprised



the maximum and minimum air temperature in the last 24 hours, actual wind
speed and actual wind direction, degree of sky cover and precipitation in the last
24 hours in Elm as well as snow depth and new snow depth in the last 24 hours
at Risiboden. The air temperature is measured in Celsius degrees and recorded
in 1/10 Celsius degrees in the NXD2000 database. The wind direction is mea-
sured in arc degrees and the rounded value of the measured value divided by 10
is recorded with 0 or 36 indicating wind coming from north, and 9, 18, and 27
indicating wind coming from east, south, and west, respectively. The wind speed
is measured in meters per seconds and recorded in knots. For standardization
purposes, for this work, the wind direction was set to 0 where either the wind
speed was 0 or the wind direction was 36. The degree of sky cover was recorded
as follows: 0 indicates a clear sky, 4 a coverage of 50% and 8 a cloudy sky. For
the precipitation, the water equivalent was given, i.e. the snow was melted and
the water amount was recorded in millimeters. The new snow depth as well as
the snow depth are measured in centimeters and recorded unaltered.

Meteorological factors are potentially useful for estimating snowpack insta-
bility, but interpretation is uncertain and the evidence less direct than for snow-
pack factors [16]. Avalanche expert knowledge was taken into account by using
the derived variables listed in Table 1, which were defined for NXD2000 for the
Canton of Glarus and are documentated for internal use. In the following, we
explain how these variables and their range of values are derived from the data
described above.

Table 1. Meteorological variables are measured daily. The definition of derived vari-
ables allows to consider an expert knowledge about avalanche activity.

Variable Unit Range of values

1 Max. air temperature in the last 24 hours [1/10 °C] [-178, 240]
2 Max. air temperature in the last 48 to 24 hours [1/10 °C] [-178, 240]
3 Min. air temperature in the last 24 hours [1/10 °C] [-251, 157]
4 Min. air temperature in the last 48 to 24 hours [1/10 °C] [-251, 157]
5 Actual wind direction {0, 10, . . . , 350}
6 Wind direction of the previous day {0, 10, . . . , 350}
7 Wind speed [kn] [0, 206]
8 Wind speed of the previous day [kn] [0, 206]
9 Degree of sky cover {0, 12, . . . , 96}

10 Precipitation in the last 24 hours [mm] [0, 989]
11 Precipitation in the last 48 to 24 hours [mm] [0, 989]
12 New snow fallen in the last 24 hours [cm] [0, 550]
13 New snow fallen in the last 72 to 24 hours [cm] [0, 575]
14 Snow depth [0, 432]

The maximum and minimum air temperature in the last 48 to 24 hours
(lines 2 and 4 in Table 1) refers to the maximum and minimum air temperature



recorded for the previous day. The wind direction (lines 5 and 6 in Table 1) is
multiplied by 10, the wind speed (lines 7 and 8) is multiplied by 5.1479, and the
degree of sky cover (line 9) is multiplied by 12. The precipitation in the last 48
to 24 hours (line 11) refers to the precipitation recorded for the previous day.
The amount of new snow fallen in the last 24 hours (line 12) is multiplied by 5.
The amount of new snow fallen in the last 72 to 24 hours (line 13) is defined as
the sum of the weighted new snow depths of the last 3 days multiplied by 5. The
snow depth (line 14) is divided by the mean of all snow depths in the database
and multiplied by 100.

Only the avalanches endangering the main road were recorded. In this work,
we included 7 avalanche paths with 7 to 13 avalanches each. We did not dis-
criminate between avalanche paths, and days with at least one avalanche being
released in one of these paths were considered as one event. The complete data
set contained 53 positive examples, i.e. avalanche days, and 6889 negative exam-
ples, i.e. non-avalanche days. The ratio of positive to negative examples therefore
was approximately 1:130. The data set was divided into a training and a test set
as follows: The test set consisted of all entries from November 1st, 2002 to April
30th, 2013. By this means, the ratio of positive to negative examples matched
approximately the ratio observed in the real world. The training set consisted
of all avalanche days from January 1st, 1972 to April 30th, 2002 and about 10
times as many non-avalanche days drawn randomly every year. The test data
set consisted of 12 positive and 1572 negative examples, the training data set
consisted of 41 positive and 560 negative examples.

5 Results

Two BRFs were trained using the size of the positive class as bootstrap sample
size for positive and negative examples. For the positive class, the cutoffs were
set to 0.5 and 0.6, respectively. The number of variables to be tested for the best
split was set to 2. The cutoff as well as the number of variables to be tested for the
evaluation of the splits were determined using 10-fold cross-validation. For the
cutoff, the following values were tested: 0.3, 0.4, 0.5, 0.6, and 0.7. For the number
of variables, the following values were tested: 2, 3, and 4. The contingency tables
obtained for the test data are shown in Fig. 2.

Observed

0 1

0 1496 6
1 76 6

Predicted

Observed

0 1

0 1517 7
1 55 5

Predicted

Model BRF 0.5 Model BRF 0.6

Fig. 2. For model BRF 0.5, the cutoff for the positive class was set to 0.5. For model
BRF 0.6, the cutoff for the positive class was set to 0.6. It is observed that a decrease
in the cutoff leads to an increase in the number of true positives and false positives.



For model BRF 0.5 with a cutoff of 0.5, the number of true positives is higher
with respect to model BRF 0.6 with a cutoff of 0.6. On the other hand, model
BRF 0.6 achieved a lower number of false positives. Using WRF, model WRF 5
was trained using a class weight of 5 for the positive class and a class weight of
1 for the negative class. The class weights were determined using 10-fold cross-
validation. For the positive class, the following weights were tested: 1, 2, 3, 5, 10,
15, 20, 25, 30, 50, 100, 110, 120, 130, and 150. The class weight for the negative
class was set to 1. The contingency table obtained for the test data is shown in
Fig. 3. In Table 2, the quality measures for the generated models for the test
data are listed.

Observed

0 1

0 1516 7
1 56 5

Predicted

Model WRF 5

Fig. 3. For model WRF 5, the class weights for the positive and negative class were
set to 5 and 1, respectively. The results are very similar to the ones obtained for model
BRF 0.6.

Table 2. In the quality measures obtained for the test data, the analogy between
models BRF 0.6 and WRF 5 becomes evident. No WRF similar to model BRF 0.5
could be trained with an acceptable number of false positive forecasts.

Model TN FN FP TP POD PON FAR TSS PPV NPV

BRF 0.5 1496 6 76 6 0.500 0.952 0.927 0.452 0.073 0.996
BRF 0.6 1517 7 55 5 0.417 0.965 0.917 0.382 0.083 0.995
WRF 5 1516 7 56 5 0.417 0.964 0.918 0.381 0.082 0.995

The performance of models BRF 0.6 and WRF 5 was almost the same. The
sensitivity was quite low with only 41.7%, hence the number of false positives
was low too compared to model BRF 0.5. No WRF with a sensitivity of 50% and
an acceptable number of false positive forecasts could be trained. While in the
case of a positive forecast an avalanche occurred only with a probability of 7.3%
to 8.3%, depending on the model used, negative forecasts were very reliable with
a negative predictive value of 99.5% and 99.6%, respectively. Compared to the
quality measures obtained for the training data shown in Table 3, the sensitivity,
the true skill score and the positive predictive value were considerably lower.



Table 3. The quality measures obtained for the training data showed differences be-
tween BRF and WRF. The sensitivity for the BRFs was 100%, while for model WRF 5
it was 65.9%.

Model TN FN FP TP POD PON FAR TSS PPV NPV

BRF 0.5 525 0 35 41 1.000 0.938 0.461 0.938 0.539 1.000
BRF 0.6 538 0 22 41 1.000 0.961 0.349 0.961 0.651 1.000
WRF 5 531 14 29 27 0.659 0.948 0.518 0.607 0.482 0.974

The BRF models showed a sensitivity of 100% for the training data while for
model WRF 5, a sensitivity of 65.9% was obtained. For all models, the sensitivity,
the true skill statistic and the positive predictive value were noticeably higher
for the training data than for the test data. Accordingly, the false alarm ratio
was lower for the training data than for the test data. These differences were
more pronounced with the BRF models respect to the WRF model.

The similarity of the two BRF models became visible in the misclassified
examples: For the test data, the false negatives for model BRF 0.5 were a subset
of the false negatives for model BRF 0.6. On the other hand, the false positives
for model BRF 0.6 were a subset of the false positives of model BRF 0.5. When
comparing the misclassified examples for the BRF and WRF models, it was
noticed that both models showed the same false negative predictions. 46 false
positives showed up in BRF 0.6 as well as in WRF 5. The comparison of all
three models can be summarized as follows: 52 examples were misclassified by all
three models, consisting of 6 false negatives and 46 false positives. This makes up
63.4% of the misclassifications of model BRF 0.5, 83.9% of the misclassifications
of model BRF 0.6 and 82.5% of the misclassifications of model WRF 5.

Compared to the two decision trees described in [12], our models achieved
a lower sensitivity but a higher specificity. With different test sets, the models
described in [12] had a sensitivity of 61% and 100% with a corresponding speci-
ficity of 83% and 21%, respectively. The true skill score was 21% for the second
model and therefore lower than in our models. The first model achieved a true
skill score of 44% which was lower than in our model BRF 0.5 only. The false
alarm ratio in our models is noticeably higher for the test data. With the training
data, our models achieved a higher true skill score, specificity and false alarm
ratio than did the models in [12]. It has to be remarked that in [12] the ratio of
positive to negative examples in the test data was about 1:6. Furthermore, the
presented models were trained considering two or three variables while in our
models we applied no variable selection.

In [18], large and infrequent snow avalanches are predicted. Considering new
snow depth only, a sensitivity of about 65% was achieved which seems favourable
compared to our models. The presented models showed a false alarm ration of
about 90% which is similar to the false alarm ration of our models on the test
data.

For the purpose of comparison, the following classifiers were employed using
the default settings in WEKA [11]: AdaBoost.M1 [8] using DecisionStump [13]



as base classifier; bagging [1] using DecisionStump [13] and REPTree [7] as base
classifier; logistic regression [15]. The resulting models show a significantly lower
sensitivity compared to our models and therefore are not applicable for decision
support in our case.

6 Discussion

Two types of models proved to be feasible: On the one hand, two models with a
sensitivity of slightly more than 40% were trained. On the other hand, one model
with a sensitivity of 50% was trained. The latter showed a considerably higher
number of false positive forecasts and a slightly lower positive predictive value.
No WRF with a sensitivity of 50% and an acceptable number of false positives
could be trained. Therefore, with this data, BRF could be chosen for modeling
a system for decision support in avalanche warning.

The trained models are feasible as a decision support in avalanche warning:
The testing period comprises 11 winter seasons consisting of approximately 181
days each. For this period, 55 to 76 false positive forecasts are acceptable. The
misclassification rate is comparable to that of an human expert. Accepting a
higher number of false negative forecasts for a higher sensitivity may make sense:
Not all avalanches contained in the database reached the road. Danger does not
occur always with a false negative forecast and therefore 6 to 7 false negatives
are acceptable. It would be interesting to differentiate between avalanches that
reached the road and avalanches that did not. In this work, due to the lack of
data, this differentiation was not made.

The models are developed for the Kleintal in the Canton of Glarus in Switzer-
land based on the data contained in NXD2000. In contrast to NXD2000, no com-
parison with previous similar situations can be made, but the models allow for
probabilistic forecasts. Therefore, the cutoff for the positive class for BRF could
also be determined using ROC curves and the corresponding weight adopted in
WRF for the positive class derived from this cutoff according to the procedure
described in [6].

The positive and negative predictive values present valuable information for
assessing a given forecast. While sensitivity and specificity are important quality
measures and their values have to be as high as possible, they do not allow for
an assessment of a given prediction. However, this is an important information
for the avalanche service using the system as a decision support in avalanche
warning.

In BRF 0.5, BRF 0.6 and WRF 5, mostly the same examples were misclassi-
fied. Considering the fact that particularly for the negative examples the misclas-
sified examples comprised less than 5% of all examples, it can be supposed that
these misclassifications are due to the data. The training examples were chosen
randomly on a yearly basis and therefore few consecutive days are present in
the training data set. The training examples could as well be chosen using sta-
tistical methods analogous to the approaches employed in [12, 17, 18]. The test
data set contains time series of meteorological variables for up to 178 consecu-



tive days. Differentiation of two consecutive days belonging to different classes
poses a major challenge and cannot be made by analyzing the meteorological
values only. The definition of additional meaningful variables could improve the
differentiation between positive and negative examples.

The model performance with the training data is significantly superior to
the model performance with the test data. Generalization seems to be an issue.
One possible reason may be that the test data contains a high percentage of
consecutive days, thus the recommendations given in the last paragraph apply.

7 Conclusions and Further Work

Based on meteorological data measured on a daily basis as well as avalanche
data, a system for the decision support in avalanche warning has been modeled.
In this data, avalanche days are rare events. All trained models have a maximum
sensitivity of 50% and a high false alarm ratio. Nevertheless, the trained mod-
els are feasible as decision support in avalanche warning. The number of false
negative and false positive forecasts are acceptable with respect to the period
considered, and approximately match the performance of a human expert.

Compared to the models described in [12, 17, 18], the following aspects of
our work should be noted: First, the quality measures were chosen from the
point of view of the designated user, the members of the avalanche service which
is in charge of assessing the local avalanche danger. The positive and negative
predictive values, which are not presented in the cited approaches, provide an
assessment of the forecast reliability. From an operational point of view, these are
the most important quality measures. Second, the models allow for probabilistic
forecasts and therefore for the characterization of the probability of an event.
Third, BRF and WRF proved an adequate starting point for obtaining a feasible
system for decision support in snow avalanche warning with rare events.

There are several directions in which the work presented in this paper should
be extended. In order to achieve a higher performance, additional meaningful
variables should be defined; these may be quantitative as well as qualitative
variables. A more sophisticated variable selection could also prove beneficial.
Depending on the weather situation, the importance of meteorological vari-
ables varies. This can be taken into account by defining variables describing
the weather situation. Since the snowpack develops with time, defining variables
characterizing weather trends could prove advantageous. The influence of the
training data on the generated model should be investigated. Training examples
may be chosen according to statistical criteria, or all data not assigned to the
test data set may be used for training. The possibility to additionally predict
which avalanche path is in danger of being released would be advantageous for
the avalanche service. However, this requires an appropriate amount of data.
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