Modeling a System for Decision Support in Snow Avalanche Warning Using Balanced Random Forest and Weighted Random Forest

Sibylle Möhle^{1,2}, Michael Bründl², and Christoph Beierle¹

¹ Dept. of Computer Science, University of Hagen, Germany smoehle@acm.org, beierle@fernuni-hagen.de
² WSL Institute for Snow and Avalanche Research SLF, Switzerland bruendl@slf.ch

Snow avalanches endanger traffic infrastructure

Photograph: M. Bründl (SLF)

Photograph: M. Laternser (SLF archives)

Factors influencing the formation of snow avalanches

- Precipitation

 New snow
 Rain

 Wind

 Wind speed
 Wind direction
- Solar radiation
- Air temperature

Photograph: D. Bommeli (SLF observer)

Avalanche hazard assessment

- Analyze meteorological variables and snowpack properties
- Compare with similar situations observed in the past
- Experience
- Intuition

Related work

- Forecasting large and infrequent snow avalanches using classification and regression trees
- Forecasting snow avalanches in coastal Alaska using classification trees
- Predicting wet-snow avalanches using classification trees and Random Forests

Contributions of our paper

- We developed a feasible decision support system for snow avalanche warning.
- 2 We investigated the suitability of Random Forests and variants thereof.
- 3 We identified quality measures for assessing the obtained models.

Avalanche hazard assessment in the region considered

Data

- Meteorological variables
 - Weather data
 - Snow data
- Avalanche information
 - Date
 - Avalanche characteristics

Method

- NXD2000 (nearest neighbours method)
 - Determine 10 most similar situations
 - Consider avalanche activity for a period of 3 days
- Experience and intuition

The region considered

Map: swisstopo, image editing: A. Stoffel (SLF), S. Moehle

Meteorological variables are measured daily

ELM

- Minimum and maximum temperature in the last 24 hours
- Actual wind speed and direction
- Actual sky cover
- Precipitation in the last 24 hours

Risiboden

- New snow fallen in the last 24 hours
- Snow depth

	Abbreviation	Unit	Range
Temperature	e_tmin_0, e_tmin_1 e_tmax_0, e_tmax_1	[1/10 °C] [1/10 °C]	[-251, 157] [-178, 240]
Wind	e_dw_0, e_dw_1 e_vw_0, e_vw_1	[kn]	{0, 10,, 350} [0, 206]
Sky cover	e_clouds_0		{0, 12,, 96}
Precipitation	e_prec_0, e_prec_1	[¹ /10 mm]	[0, 989]

Derived meteorological variables for Risiboden

	Abbreviation	Unit	Range
New snow	r_hn24_0 r_hn24_prev	[cm] [cm]	[0, 550] [0, 575]
Snow depth	r_hs_0		[0, 432]

- Period 01.01.1972 30.04.2013
- Winter season: 1st November to 30th April
- 6943 data records
 - 6889 non-avalanche days
 - 53 avalanche days
- Positive-negative ratio: \approx 1:130

Avalanche forecasting as a classification problem

		predicted		
		non-avalanche	avalanche	
observed	non-avalanche	TN	FP	
	avalanche	FN	TP	

- TN: True negative forecasts
- FN: False negative forecasts
- FP: False positive forecasts
- TP: True positive forecasts

Investigating established quality measures

Results: Additional measures for forecast assessment

Positive predictive value:

$$\mathsf{PPV} = rac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}} = 1 - \mathsf{FAR}$$

Negative predictive value: $NPV = \frac{TN}{TN + FN}$

- Ensemble learning method for classification (and regression)
- Deals with unknown variable dependencies and distribution
- Handles discrete and continuous variables

Reviewing the Random Forest algorithm

Creating a forest of size ntree

- 1 Draw a bootstrap sample
- 2 Construct a decision tree without pruning
- 3 Add the tree to the forest
- 4 Repeat 1. to 3. ntree 1 times

Classifying a data record

- 1 Put the data record down the random forest
- 2 Assign class with majority decision

Sampling

- Undersampling negative class (non-avalanche days)
- Oversampling positive class (avalanche days)

Cost-sensitive learning

- Consider costs for measures taken
- Different forecast types have different costs
- Assign different weights to positive and negative class

Balanced Random Forest (BRF)

 Equally-sized bootstrap samples for avalanche and non-avalanche days

Weighted Random Forest (WRF)

Assign a higher weight to the minority class

Defining training and test data sets

Training data set

- 01.01.1972 30.04.2002
- 560 non-avalanche days
- 41 avalanche days

Test data set

- 01.11.2002 30.04.2013
- 1572 non-avalanche days
- 12 avalanche days

Results: Two feasible types of models

	BRF	BRF	WRF
Identified avalanche days	6	5	5
Missed avalanche days	6	7	7
False alarms	76	55	56
Identified non-avalanche days	1496	1517	1516
Sensitivity	50%	41.7%	41.7%
Specificity	95.2%	96.5%	96.4%
Positive predictive value	7.3%	8.3%	8.2%
Negative predictive value	99.6%	99.5%	99.5%

- The developed models are feasible as a decision support in avalanche forecasting and equivalent from an operational view
- BRF and WRF are suitable for modeling a system for decision support in avalanche warning
- 3 PPV and NPV are appropriate measures from an operational point of view

The method is suitable for classification problems

- in which rare events or classes are highly unbalanced
- in which dependencies between variables are non-linear and unknown
- in wich the distribution of the variables is unknown

Further work

Define additional meaningful variables

- describing the weather situation
- describing trends
- containing region-specific expert knowledge
- Apply variable selection
- Discriminate between avalanche paths

Thank you for your attention - questions are welcome

Photograph: M. Bründl (SLF)