
Dualizing Projected Model Counting
Sibylle Möhle

Johannes Kepler University Linz
Linz, Austria

Armin Biere
Johannes Kepler University Linz

Linz, Austria

Abstract—In many recent applications of model counting not
all variables are relevant for a specific problem. For instance
redundant variables are added during formula transformation. In
projected model counting these redundant variables are ignored
by projecting models onto relevant variables. Inspired by dual
propagation which has its origin in solving quantified Boolean
formulae and jointly works on both the original formula and its
negation, we present a novel calculus for dual projected model
counting. It allows to capture existing techniques such as blocking
clauses, chronological as well as non-chronological backtracking,
but also introduces new concepts including discounting and
dual conflict analysis to obtain partial models. Experiments
demonstrate the benefit of our approach.

I. INTRODUCTION

Classical applications of #SAT, the task of counting the
models of a propositional theory, are found in the area of
probabilistic reasoning [1] adopted in, e.g., medical diagnosis
and planning. Further application scopes encompass circuit
design [2] and quantitative information flow analysis [3] as
well as differential cryptanalysis [4]. In product configuration,
the number of valid configurations under given preconditions
might be of interest [5]. For some tasks not all configuration
options might be relevant, thus only the models projected onto
the relevant variables are counted [6]. Projected models may
be required in planning as well [7], [8]. The task of projected
model counting is also referred to as #∃SAT, since the main
idea of projection is to existentially quantify the irrelevant
variables, i.e., the variables which are to be discarded. In this
sense, #SAT is a special case of #∃SAT, namely the one in
which the set of irrelevant variables is empty [8].

Particular challenges in model counting. In propositional
model counting, contrarily to SAT solving, the search does not
terminate after the detection of a model. Instead, the search
space needs to be explored exhaustively. Conflict Driven
Clause Learning (CDCL) [9], [10] provides efficient means to
deal with conflicting assignments, but a comparable method
for handling satisfying assignments is still not available. Some
state-of-the-art #SAT solvers prune the search space upon
finding a satisfying assignment by adding blocking clauses
with the aim to prevent multiple model counts [11]. An
apparent drawback of this approach is a substantial growth
of the formula since these blocking clauses are irredundant
and therefore must not be deleted. This issue is addressed
in [12], a solver for projected model enumeration working
without blocking clauses, and in [13] where blocking clauses

Supported by Austrian Science Fund (FWF) grant S11408-N23 (RiSE).

are eagerly deleted and the number of kept blocking clauses
is at any time limited to be at most linear in the number of
relevant variables. Although devised for projected answer set
enumeration, this method is readily applicable for #∃SAT.
The addition of large clauses may furthermore slow down
the solver. On this account, in #CLASP [7] the blocking
clauses are minimized which on the one hand reduces their
count and on the other hand prunes a larger portion of the
search space. To detect partial models, the DPLL-based model
counter CDP [14] performs satisfiability checks on the residual
of the formula. This is not the case in state-of-the-art SAT
solvers which only keep track of the assigned variables. From
a complexity point of view this makes sense in SAT, since a
satisfying assignment can always be extended to a total model
by a number of decisions linear in the variable count and
thus compensates for the overhead introduced by, e.g., clause
watching. In contrast, detecting partial models and subsequent
pruning of the search space leads to a higher performance gain
in #SAT, hence more computational effort may be invested.
For the same reason, more involved preprocessing techniques
are justified in model counting [15].

Our motivation. Inspired by [16], Abstract Dual
#DPLL [17] was developed with the aim to investigate
the suitability of a dual approach for exact model counting as
an alternative to component analysis [18]–[20] which can be
considered the state of the art in exact #SAT solving. One
objective of our work presented here is to extend this approach
to facilitate projected model counting. A second goal is to
incorporate methods which are widely used in state-of-the-art
SAT solvers. Our third goal is to investigate the impact of
a dual approach on the performance of a non-dual method.
We only partially consider preprocessing [15], [21] in this
work, but plan to further investigate its applicability in a dual
setting and to develop adequate methods in the future.

Our contribution. In this work we present the first dual
calculus addressing projected exact unweighted model count-
ing. First, we present a dual representation of the formula
under consideration which facilitates the detection of partial
models and subsequent pruning of the search space. Our
method incorporates “good learning” and is exempt from
satisfiability checks and clause watching mechanisms. This
results in a significant performance gain compared to the non-
dual variant of the same algorithm which finds only total
models. Second, our calculus takes an arbitrary formula or
a circuit as argument and returns the correct model count
even if for its transformation into CNF techniques are adopted

which in general do not preserve the model count, such as the
Plaisted-Greenbaum transformation [22]. Third, we introduce
a novel technique based on flipping and discounting which
prevents multiple model counts without the use of blocking
clauses. Our calculus models techniques implemented in state-
of-the-art SAT solvers, such as conflict analysis and conflict-
driven backjumping. Finally, we provide a robust and carefully
tested implementation DUALIZA of our calculus.

In Figure 1 we provide a simple example to highlight the
power of dual projected model counting. More details are
discussed in Section VI.

The paper is organized as follows: In Section II, we discuss
basic concepts. Section III introduces the concept of duality
and our new duality property. Our calculus is presented in Sec-
tion IV on which our implementation described in Section V
is based. After experiments in Section VI, we discuss related
work in Section VII before we conclude in Section VIII.

II. PRELIMINARIES

Let F be an arbitrary (propositional) formula over vari-
ables Z, interpreted over Boolean constants B = {0, 1}.
Further assume Z to be partitioned into the set of relevant
input variables X and the set of irrelevant input variables Y .
We denote with inputs the variables contained in either X
or Y . A total assignment σ : Z → B maps Z to the truth
values 1 and 0 and can be applied to F to yield a truth value
σ(F) ∈ B, also written F |σ . A relevant input assignment is
defined on X and undefined elsewhere. Similarly, an irrelevant
input assignment is defined. This lets us decompose any total
σ = σX ∪ σY into its relevant σX and irrelevant σY part. We
use F (U), or equivalently var(F) ⊆ Z, to denote that F only
depends on (contains) a subset U ⊆ Z of all variables and
write F (X,Y) if F is defined over X ∪ Y .

We count the number of satisfying assignments of F (X,Y)
projected onto the relevant variables X , defined as

#∃Y. F (X,Y) = |{τ : X → B | exists σ : Z → B with

σ
(
F (X,Y)

)
= 1 and τ = σX}|.

Thus #SAT turns out to be the special case where Y = ∅.
In order to make use of sophisticated data structures and

algorithms used in modern SAT solvers we further consider
propositional formulae in CNF and thus for instance apply
Tseitin transformation [23] on F to obtain a CNF representa-
tion P (X,Y, S) of F depending on X and Y as well as on
variables S introduced by the transformation. Note that, even
though the Tseitin encoding is only satisfiability-preserving,
i.e., the result is not logically equivalent, it does preserve
the number of models, assuming all inputs are relevant. The
models of F projected onto X are exactly the models of its
Tseitin representation ∃S.P (X,Y, S) projected onto X , and

#∃Y, S. P (X,Y, S) = #∃Y. F (X,Y).

Our approach uses two formulae to capture the projected
model counting problem. The primal formula P (X,Y, S)
ranges over the inputs X and Y and the primal variables S,

while the dual formula N(X,Y, T) ranges over the same
inputs X and Y but also over the dual variables T instead
of the primal variables S. The idea is that N is the “negation”
of F , and hence of P , which is easy to achieve by encoding the
negation of F using Tseitin variables. The precise condition
is discussed further down. In line with the definition of an
assignment, a primal assignment σS and a dual assignment σT
are defined. This extends our notion of total assignment to
σ = σX ∪ σY ∪ σS ∪ σT over variables V = X ∪ Y ∪ S ∪ T .

A CNF F over V is a conjunction of clauses and each
clause is a disjunction of literals. A literal ` is either a variable
v ∈ V or its negation ¬v. In both cases we write var(`) = v
and extend this notion to sequences and sets of literals as well
as formulae. We also use ` = ¬` and assume ¬¬` = `. We
also write C ∈ F if C is a clause of F and similarly ` ∈ C.
A sequence I = `1 · · · `n of literals with mutually exclusive
variables (var(`i) 6= var(`j) for i 6= j) is called a trail. Trails
can be concatenated, I = I ′I ′′, assuming the variables in I ′

and I ′′ are distinct. We also use ` ∈ I , treating I as set of
literals, and in particular define X − I = X − var(I) ⊆ X ,
the subset of variables of X not in I . These trails are also
interpreted as partial assignments with I(`) = 1 iff ` ∈ I . Thus
I(`) = 0 if ¯̀ ∈ I and I(`) is undefined if var(`) 6∈ var(I).
This gives the useful shortcut 2|X−I| to denote the number
of (total) relevant input assignments covered by the partial
assignment represented by the trail I . We denote the projection
of I onto X by π(I,X) and consider it also a conjunction of
literals. The residual of F with respect to I , denoted by F |I ,
is obtained by replacing in F the literals occurring in I by
their truth value. I satisfies F , denoted by I |= F , if F |I = ∅.
Trail I falsifies F if it contains the empty clause, i.e., ∅ ∈ F |I .

We are going to present a proof calculus in the style of
DPLL(T) [24] and will also include elements of CDCL
formalized in [25]. Proof rules model state transitions of an
abstract projected model counting DPLL / CDCL solver.

Besides primal and dual formulae, the main ingredient of
an abstract state is a trail which, as discussed above, captures
the current partial assignment and in addition marks some of
its literals ` as decision literals, using the notation `d. These
denote open “left” (or “first”) branches in the sense of DPLL.

We also mark literals ` starting a “right” (or “second”)
branch with an f followed by the number of models found at
the corresponding decision level in parenthesis, i.e., `f(m). The
idea is that after closing the left branch of a decision its deci-
sion literal `d becomes a flipped literal `

f(m)
starting the right

branch of that decision maintaining its decision level dl(`).
We denote the set of decision literals in I by decs(I) and
interpret it as a conjunction of literals where appropriate. In
an analogous manner, we represent the set of flipped literals
in I by flips(I) and the set of unit literals in a residual G|I
of a formula G w.r.t. I by units(G|I).

Backjumping involves the addition of redundant clauses
which may be deleted anytime. We mark redundant clauses
with an r, writing Cr, to distinguish them from blocking
clauses which prevent multiple model counts and therefore
have to be retained until the end of the procedure.

$ cat clause.form
a | b | c | d
$ dualiza -e clause.form
ALL SATISFYING ASSIGNMENTS
d
c !d
b !c !d
a !b !c !d
$ dualiza clause.form
NUMBER SATISFYING ASSIGNMENTS
15

$ dualiza clause.form -l | grep RULE
c LOG 1 RULE UNX 1 -4
c LOG 1 RULE UNX 2 -4
c LOG 1 RULE BN0F 1 -4
c LOG 2 RULE UNX 3 -3
c LOG 2 RULE BN0F 2 -3
c LOG 3 RULE UNX 4 -2
c LOG 3 RULE BN0F 3 -2
c LOG 3 RULE UP 1 1
c LOG 3 RULE EP1 1

Fig. 1. On the left hand side of the figure our implementation DUALIZA is applied to a simple example consisting of a single clause. The “log” output on
the right hand side demonstrates that in dual mode this example is solved in essence by just dual propagation (UNX) (see Section VI for details).

III. DUALITY

In propositional model counting the search space needs
to be processed exhaustively. In this sense #SAT exhibits a
certain analogy to QBF solving where, due to the existence of
universal quantifiers in the formula, the complete search space
needs to be traversed.

To overcome this limitation, dual propagation was intro-
duced for circuits in [26] and adapted to CNF-based QBF
solving in [27]. This work inspired our abstract framework
developed with focus on DPLL [17]. In the work reported
here, we extend this approach in two ways: first by projection
and second by elements of CDCL.

Let F (X,Y) be an arbitrary (propositional) formula and
our task is to compute the number of models of F projected
onto X . Following the concepts introduced in Section II,
we compute a dual representation of F consisting of two
CNF formulae P (X,Y, S) and N(X,Y, T). Recall that P
and N encode F and its negation, respectively.

Our model counter executes a dual variant of CDCL on
P and N simultaneously and maintains a single trail I with
var(I) = X ∪ Y ∪ S ∪ T . The input variables in X and Y
are shared by P and N and are called shared variables. They
may be propagated in either formula [26].

Basic idea. Every trail I either satisfying P or falsifying N
is a (partial) model of F and represents 2|X−I| total models
of F projected onto X . In contrast, no model of F can
be computed if I falsifies P . Obviously, the same holds if
I satisfies N , but due to the structure of I this situation will
never arise in our framework as will be clarified further down.
Conflict analysis is performed after a conflict is detected, and
backtracking occurs upon either a conflict or the detection
of a model of F . If I is a partial assignment, backtracking
prunes a potentially large portion of the search space. The
procedure terminates as soon as the complete search space
has been processed.

Thus in our approach we assume F (X,Y) is represented
by a pair of dual formulae satisfying the following definition.

Definition 1 (Combined Formula Pair): A combined formula
pair of a formula F (X,Y) consists of formulae P (X,Y, S)

and N(X,Y, T) meeting the following conditions:

∃S. P (X,Y, S) ≡ F (X,Y) (1)
∃T.N(X,Y, T) ≡ ¬F (X,Y) (2)

where X , Y , S and T are pairwise disjoint sets of vari-
ables. We denote a combined formula pair of F (X,Y)
by [P (X,Y, S) ‖ N(X,Y, T)](F) or [P ‖ N](F).

Definition 1 essentially states that F and P are semanti-
cally equivalent, i.e., have the same models, upon projection
onto X ∪ Y and that the same holds for ¬F and N .

As a consequence, if P and N are a combined formula pair
of F , for every total assignment σ of X and Y it holds that
σ(∃S.P (X,Y, S)) 6= σ(∃T.N(X,Y, T)).

Definition 2 (Duality Property): Let X , Y , S and T be
pairwise disjoint sets of variables. Two formulae G(X,Y, S)
and H(X,Y, T) comply with the duality property, if

∀X,Y. ((∃S.G(X,Y, S))⊕ (∃T.H(X,Y, T))) (3)

where “⊕” denotes “exclusive or (XOR)”.
Lemma 1: The duality property holds for a combined

formula pair [P (X,Y, S) ‖ N(X,Y, T)](F).
Consider an assignment I (trail) with P (X,Y, S)|I′ |= I for

I ′ = π(I,X ∪ Y), which for instance holds if variables in X
and Y are the only decisions in I and the rest of I is obtained
through unit propagation in P . Then the dual property in (3)
continues to hold for residuals w.r.t. I:

∀X,Y. ((∃S. P (X,Y, S)|I)⊕ (∃T.N(X,Y, T)|I)) (4)

This property provides the most important invariant for our
calculus discussed in the next section, but requires that we
split on X and Y variables first.

In general, we assume that only (3) holds for P and N ,
without necessarily requiring that there exists an F satisfying
Definition 1. In this situation, even after assigning X and Y
and performing unit propagation, there might still be an
unassigned variable s ∈ S left. Assume we extend the trail
with the decision ` with var(`) = s. At this point the dual
property (4) might seize to hold, since the value picked for s
may lead to an unsatisfiable residual P (X,Y, S)|I` even if
P (X,Y, S)|I ¯̀ is satisfiable, thus both ∃S. P (X,Y, S)|I` and
∃T.N(X,Y, T)|I` are false.

For correctness it is sufficient to first split on relevant
variables X , followed by irrelevant variables Y and pri-
mal variables S, but never split on dual variables T . This
splitting order maintains the following direction (5) of the
dual property (4) on residuals, namely that a conflict in N
guarantees that all extensions to the current assignment to
relevant variables in X can be extended to total models of P :

∀X,Y. ((¬∃T.N(X,Y, T)|I)→ (∃S. P (X,Y, S)|I)) (5)

A formal proof of this invariant and accordingly the correct-
ness of our calculus is out of scope of this paper. For now we
rely on extensive testing and thus an empirical justification.

IV. CALCULUS

We describe the framework of our calculus by a labeled
state transition system 〈S,L,;, s0〉 with set of states S, set
of labels L and transition relation ;⊆ S × S. Intermedi-
ate states are of the form (P,N, I,M) where P (X,Y, S)
and N(X,Y, T) are a combined formula pair of F (X,Y),
I is a trail with var(I) ∈ X ∪ Y ∪ S ∪ T and M ∈ N. The
initial state is defined by s0 = (P,N, (), 0) with () denoting
the empty trail. The terminal state is M ∈ N representing
#∃Y.F (X,Y). The transition relation ; is defined as the
union of transition relations ;l with l ∈ L. The labels indicate
the action taken (1st letter), to which formula or variable set
it is applied (2nd letter), whether it is triggered by a satisfying
or falsifying assignment (3rd letter) and whether a blocking
clause is learned or flipping is applied (4th letter). The rules
are listed in Figure 2.

Terminate search. The search terminates as soon as I either
satisfies or falsifies either P or N and the relevant search space
has been traversed exhaustively. If I falsifies P , π(I,X) can
not be extended to a model of ∃Y.F (X,Y), and M remains
unaltered (EP0). Requiring that no decision literals are left
on the trail ensures that no models are missed due to a
“wrong” assignment of variables in S. If I either satisfies P
or falsifies N , π(I,X) can be extended to 2|X−I| mod-
els of ∃Y.F (X,Y), and M is updated accordingly (EP1
and EN0). Requiring that no relevant decision literal is left
on the trail is sufficient since in the presence of irrelevant
or primal decision literals all relevant variables are assigned.
Flipping an irrelevant or primal decision literal therefore would
yield redundant models w.r.t. projection onto X .

Backtracking. If the partial interpretation represented by
the trail falsifies P , the solver may backtrack chronologically
and turn the last decision literal `d into a flipped decision
literal `

f(m)
where m equals the number of models detected

at decision level > dl(`). This model count is obtained by
summing up the model counts assigned to the flipped decision
literals with decision level higher than dl(`), while M remains
unaltered (BP0F). Alternatively, a redundant clause may be
learned which becomes unit for I , the solver backtracks non-
chronologically and propagates this new unit literal. Back-
jumping involves discarding the models found in I ′, hence
their count is subtracted from M to prevent multiple counts
when they are found again (JP0). If the partial interpretation

represented by the trail falsifies N , its projection onto X
can be extended to a model of F , and M is incremented
by the number of total models projected onto X represented
by the trail. Flipping the last irrelevant or primal decision
literal would yield redundant models w.r.t. projection onto X .
Therefore, when backtracking chronologically, the solver turns
the last relevant decision literal into a flipped decision literal
and assigns it the sum of the number of models represented by
the actual trail projected onto X and all models detected at de-
cision levels > dl(`) (BN0F). Alternatively, a blocking clause
is added to P (BN0L). If IldI ′ satisfies P , π(I`I ′, X) can
be extended to m′′ = 2|X−I`I

′| models of ∃Y.F (X,Y), and
M is incremented by m′′. As discussed above, the last relevant
decision literal ` must be considered. It may be turned into a
flipped decision literal and assigned the sum of m′′ and all
number of models detected at decision level > dl(`) (BP1F).
Alternatively, a blocking clause may be added to P (BP1L).

Decisions. P |I and N |I contain neither a unit nor the
empty clause. Relevant input variables are prioritized (DX)
over irrelevant input and primal variables (DYS). Assigning
primal variables before irrelevant input variables might result
in a conflict in P but has no effect on N and hence does not
affect the model count. In this case, the duality property might
not hold for the residuals as discussed in Section III.

Unit propagation. Literals are propagated in both P and N .
Unit propagation in P is prioritized over unit propagation in N
and is executed as in SAT (UP). For unit propagation in N ,
two cases need to be considered. If var(`) ∈ X ∪ Y , I is ex-
tended by `

d
to enforce backtracking due to a conflict in N |I`

in the next step (UNXY). Otherwise, it is propagated (UNT).
Forgetting redundant clauses. Deletion of redundant clauses

is equivalence-preserving, hence redundant clauses may be
removed anytime (FP) assuming P is conflict-free under I .

Blocking clauses in dual mode. Blocking clauses shall
impede the multiple detection of models. Since they are
added exclusively to P , this fails in the dual setting if a
trail falsifies N . Consider F (X, ∅) = (1 ∨ 2) ∧ (1 ∨ 2)
over X = {1, 2, 3, 4} and Y = ∅. We define P = F and
N = (5∨1)∧ (5∨2)∧ (6∨1)∧ (6∨2)∧ (5∨6), hence S = ∅
and T = {5, 6}. After deciding 4, 3 and 2 (DX), 5 and 6 are
propagated in N (UNT) resulting in a conflict in N |I with
I = (4d, 3d, 2d, 5, 6) and π(I,X) = (4, 3, 2). The solver adds
the blocking clause (2∨3∨4) to P , sets M = 2 and backtracks
chronologically (BN0L). After propagating 1 (UP), P is falsi-
fied. JP0 is applied yielding the redundant unit clause (2), and
the solver jumps back to decision level 0. It propagates 2 (UP),
5 and 6 (UNT) resulting in I = (2, 5, 6) which falsifies N .
The partial model π(I,X) = (2) represents 23 = 8 total
models of F . Note that this model subsumes the one found
previously. In our framework, we therefore have to disallow
the combination of blocking clauses and dual reasoning.
This means that “L” rules can not be combined with “N” rules.
Thus only “F” rules are allowed if we insist on using “N”
rules, which is the default in our implementation.

A workaround would be the following: If a blocking clause
is added to P , either its negation is added disjunctively to N

EP0: (P,N, I,M) ;EP0 M if ∅ ∈ P |I and decs(I) = ∅

EP1: (P,N, I,M) ;EP1 M + 2|X−I| if P |I = ∅ and var(decs(I)) ∩X = ∅

EN0: (P,N, I,M) ;EN0 M + 2|X−I| if ∅ ∈ N |I and var(decs(I)) ∩X = ∅

BP0F: (P,N, I`dI ′,M) ;BP0F (P,N, I`
f(m′)

,M) if ∅ ∈ P |I`I′ and
var(decs(I ′)) = ∅ and m′ =

∑
{m | `f(m) ∈ I ′}

JP0: (P,N, II ′,M) ;JP0 (P ∧ Cr, N, I`′,M −m′) if ∅ ∈ P |II′ and
P |= C and C|I = { `′ } and m′ =

∑
{m | `f(m) ∈ I ′}

BN0F: (P,N, I`dI ′,M) ;BN0F (P,N, I`
f(m′+m′′)

,M +m′′) if ∅ ∈ N |I`I′ and
var(`) ∈ X and var(decs(I ′)) ∩X = ∅ and m′ =

∑
{m | `f(m) ∈ I ′} and m′′ = 2|X−I`I

′|

BN0L: (P,N, I`dI ′,M) ;BN0L (P ∧D,N, I`,M +m′′) if ∅ ∈ N |I`I′ and
var(`) ∈ X and var(decs(I ′)) ∩X = ∅ and m′′ = 2|X−I`I

′| and D = π(¬decs(I`), X)

BP1F: (P,N, I`dI ′,M) ;BP1F (P,N, I`
f(m′+m′′)

,M +m′′) if P |I`I′ = ∅ and
var(`) ∈ X and var(decs(I ′)) ∩X = ∅ and m′ =

∑
{m | `f(m) ∈ I ′} and m′′ = 2|X−I`I

′|

BP1L: (P,N, I`dI ′,M) ;BP1L (P ∧D,N, I`,M +m′′) if P |I`I′ = ∅ and
var(`) ∈ X and var(decs(I ′)) ∩X = ∅ and m′′ = 2|X−I`I

′| and D = π(¬decs(I`), X)

DX: (P,N, I,M) ;DX (P,N, I`d,M) if
∅ 6∈ (P ∧N)|I and units((P ∧N)|I) = ∅ and var(`) ∈ X − I

DYS: (P,N, I,M) ;DYS (P,N, I`d,M) if
∅ 6∈ (P ∧N)|I and units((P ∧N)|I) = ∅ and var(`) ∈ (Y ∪ S)− I and X − I = ∅

UP: (P,N, I,M) ;UP (P,N, I`,M) if {`} ∈ P |I

UNXY: (P,N, I,M) ;UNXY (P,N, I`
d
,M) if {`} ∈ N |I and var(`) ∈ X ∪ Y and

∅ 6∈ P |I and units(P |I) = ∅

UNT: (P,N, I,M) ;UNT (P,N, I`,M) if {`} ∈ N |I and var(`) ∈ T and
∅ 6∈ P |I and units(P |I) = ∅

FP: (P ∧ Cr, N, I,M) ;FP (P,N, I,M) if ∅ 6∈ P |I

Fig. 2. The complete set of rules of our framework, where P (X,Y, S) and N(X,Y, T) form a combined formula pair of F (X,Y), and I denotes the
trail over variables X ∪ Y ∪ S ∪ T . The rules cover termination (rule name starting with E), chronological and non-chronological backtracking (B and J),
decisions (D) and unit propagation (U) as well as clause forgetting (F). They may be applied either to P or N (P or N) and triggered by a falsifying (0) or
satisfying (1) assignment. Letters X, Y, S and T denote the variable sets the rules are applied to (X , Y , S and T). Finally, either a blocking clause may be
learned (L) or flipping is applied (F). Blocking clauses are added to P only and thus fail to prevent multiple model counts if a model is found due to a conflict
in N . We therefore disallow the combination of blocking clauses and dual reasoning. Discounted models might not be detected again if they are subsumed by
a blocking clause recorded previously. We therefore also disallow the combination of discounting and blocking clauses. For more details including examples
we refer to paragraphs Blocking clauses in dual mode and Combining blocking clauses and discounting in Section IV.

or, whenever a conflict in N occurs, it must be ensured
that none of the blocking clauses is falsified by the current
trail. In the first case, N is not a CNF anymore, and the
rules and preconditions involving N and the whole search
procedure need to be adapted accordingly. In the second case
we need to keep track of the blocking clauses instead, e.g., in
a CNF R (refutations), and check whether R is satisfied prior
to count a model whenever N is falsified by I .

Combining blocking clauses and discounting. If previously
found models are discounted upon backjumping and learning
a blocking clause, they may be lost. The problem in this
case arises if these models are blocked by the learned clause.
Consider F = (1 ∨ 2) ∧ (1 ∨ 3) ∧ (1 ∨ 2). P = F and
N = (6∨1)∧(6∨2)∧(7∨1)∧(7∨3)∧(8∨1)∧(8∨2)∧(6∨7∨8)
with X = {1, 2, 3, 4, 5}, Y = ∅, S = ∅, and T = {6, 7, 8}. Af-
ter deciding 5, 4, and 3, 1 and 2 are propagated which leads to
the detection of model m1 = (1, 2, 3, 4, 5). The last decision is
flipped (BP1F) and after propagation 7, deciding 2 and prop-
agating 6 and 8, a second model m2 = (2, 3, 4, 5) is found.
The solver backtracks and flips the last decision (BN0F). At a
later stage, BP0F is executed, and I = (5d, 4

f(3)
). The model

count associated with the flipped decision literal 4
f(3) refers to

models m1 and m2. Later on, a third model m3 = (1, 2, 4, 5)
is detected and (BN0F) executed. After one more propagation
step, model m4 = (1, 2, 3, 4, 5) is detected and a blocking
clause b = (2 ∨ 5) learned (BP1L). Due to the application
of JP0 in the further procedure, the solver jumps back to
level 0, i.e., past the flipped decision literal 4

f(3). It discounts
models m1 and m2, i.e., 3 total models. Since these models
are blocked by b, they can not be found again. In fact,
during the further execution the models m5 = (1, 2, 5) and
m6 = (1, 2, 3, 5) are found before terminating with EN0, and
the solver returns M = 9 instead of M = 12. Combining the
use of blocking clauses with discounting therefore conditions
to discount only models which are not blocked by the learned
clause and to add blocking clauses for these models as soon
as the respective flipped decision literal is removed from I .
An obvious drawback of this method is that these checks are
expensive since the number of models may be exponential
in the number of relevant variables. Thus our framework
also disallows the combination of discounting and blocking
clauses. This means that as soon we have discounting enabled,
actually backjumping (JP0) with m′ 6= 0, we can not use
blocking clauses (“L” rules). This provides another reason
to disable “L” rules in our implementation by default, even
though for testing purposes blocking clauses can be enabled
(if dual reasoning and discounting are disabled).

The demonstrated issues concerning the use of blocking
clauses did not use irrelevant variables, but the argument can
easily be lifted to the case where Y 6= ∅.

V. IMPLEMENTATION

We have implemented the calculus of Section IV in our
new tool DUALIZA implemented from scratch in C available
at http://fmv.jku.at/dualiza. The tool counts and prints the
number of models, optionally projected on a set of relevant

variables. It can also act as a simple SAT solver, or enumerate
all (projected) partial models, i.e., compiles a disjunctive
representation of all (projected) models.

We carefully tested our tool against state-of-the-art
SAT solvers and the model counter sharpSAT [20] using
a regression test suite which comes with the tool but also
using fuzz testing [28]. Beside the main CNF-based back-end
implementing of our calculus, we also provide our own BDD
engine, which obviously only scales for small formulae, but
is useful to test projected model counting.

The front-end of DUALIZA reads Boolean formulae in a
simple format, circuits in AIGER format [29], or CNF in
DIMACS format, and encodes them into CNF using the
Plaisted-Greenbaum transformation [22] after flattening the
internal circuit representation. As future work we plan to
further optimize the internal circuit representation. The same
procedure is applied to the negated formula to obtain a dual
representation.

The resulting primal and dual CNFs (P and N) are individu-
ally preprocessed by bounded variable elimination [21], which
is restricted to only eliminate irrelevant variables (S ∪T). We
will add more preprocessing and in particular more dedicated
preprocessing techniques such as those from [15] in the future.

The core engine of DUALIZA uses standard data structures
and algorithms implemented in state-of-the-art CDCL solvers,
including watched literals, activity-based decision heuristics
(actually VMTF), frequent garbage collection of learned
clauses, and also frequent restarts (as long as no variable
is flipped). An important optimization is to allow picking
decisions in an arbitrary order until a first model is found. Then
we restart without counting this first model and afterwards
enforce splitting on relevant variables first. Due to phase
saving this first model is found again instantly.

The source code marks the implementation of every rule
of our calculus through macros (“RULE”), which allows to
gather statistics about their application and also can be used
to produce traces of the application of our calculus on concrete
examples (“dualiza -l | grep RULE”).

VI. EXPERIMENTS

Consider again the example in Figure 1. The solver trace
(enabled with “-l”) shows the decision level (number of
decisions plus flipped decisions) in the 3rd column, followed
by the name of the rule and a running counter for each rule.
The last column gives the (encoded) flipped or added literal.

The simplest interesting example is a CNF formula con-
sisting of a single clause of n variables. In dual mode such
a formula is solved by dual propagation alone. Consider for
n = 4 the simple Boolean formula listed on the left hand side
of Figure 1 in the formula input format of DUALIZA. In dual
mode DUALIZA can enumerate and count the number of such
a formula instantly, i.e., for n = 10000 the number of models
210000− 1 is computed in 0.16 seconds. Disabling dual mode
(“--no-dual”) leads to exponential run-times in n, since our
implementation requires that all variables are assigned before
detecting that P is empty (rules BP1F and BP1L), as it is

common in SAT solvers. Already for n = 30 it takes more
than 215 seconds when only applying our flipping rules and the
procedure does not terminate within one hour when only using
blocking clauses (even with the subsumption check described
in Section VIII enabled).

For component-based model counting as implemented in the
state-of-the-art exact model counter sharpSAT [20] such single
clause instances are trivial too (10.58 seconds for n = 10000),
since for each decision in one branch the formula is satisfied
and in the other branch the clause is reduced in size. Actually
such a solver could in principle instantly determine the number
of models as soon as a component consists of a single clause.

Thus in order to show the orthogonal strength of our
approach compared to component-based model counting, we
also experimented with formulae where splitting on variables
does not partition the formula into disconnected components.
Consider for n = 4 the following formula

(x1 | x2 | x3 | x4) |
(x5 = x2 ˆ x3 ˆ x4) |
(x6 = x1 ˆ x3 ˆ x4) |
(x7 = x1 ˆ x2 ˆ x4) |
(x8 = x1 ˆ x2 ˆ x3)

The first row is similar to the previous example. The other
equalities evaluate to true if the new variable on the left is
identical to the parity (“ˆ” denotes XOR) of different sets
of three variables. The number of models is 22n − 1, e.g.,
only the assignment where the first n variables are false and
the second half are true is not a model. Our implementation
takes 244.37 seconds to compute 210000 − 1 models for n =
5000, while sharpSAT shows exponential behavior and can
only compute the model count up to n = 21 within one hour.

In a related experiment we took the 127 satisfiable CNF
benchmarks from the main track of the SAT Competition 2017,
for which at least one solver produced a correct witness during
the competition within 5000 seconds (on a slightly faster
machine). Our tool finds at least one model for 60 benchmarks
within the same time limit (best solver in the competition 102),
and provides an exact model count for 22 in primal mode
and 16 in dual mode. This shows that dual reasoning without
projection is in our current implementation not really effec-
tive for benchmarks in CNF. However, sharpSAT could only
provide an exact model count for one benchmark (“9 38”),
runs out of memory on 10 and actually also produced two
discrepancies (claimed that both “ak128modbtbg2msisc” and
“UCG-20-10p1” have no solutions).

The most recent paper on projected model counting [7] used
random benchmarks and a set of planning benchmarks, which
are only available in CNF. It turns out that our tool is not really
competitive on these instances without component reasoning.
Due to the non-structural CNF input format, dual propaga-
tion is not effective and our tool in essence enumerates all
(projected) models explicitly. We are exploring other potential
sources of benchmarks for projected model counting, including
AIGER circuits from hardware model checking.

Our experiments used an Intel Xeon E5-2620 v4 CPU at
2.10GHz (turbo-mode disabled) with memory limit of 31 GB.

VII. RELATED WORK

Due to its wide practical applicability, research on propo-
sitional model counting exhibits an impressive diversity, as
demonstrated by the following list of related work.

Exact model counting. A widely used paradigm is that of
splitting the formula into subformulae called components with
disjoint variable sets which are then processed separately [18].
The authors also demonstrate the need for so-called good
learning in contrast to nogood learning realized by CDCL.
Combining component caching and clause learning resulted in
a significant performance gain [19]. In sharpSAT [20], implicit
BCP and an improved component caching additionally reduces
search space and cache size. The caching scheme was adapted
to support parallelization [30] and distributivity [31]. For a
survey on exact model counting algorithms we refer to [32].

Approximate model counting. In some applications, such as
probabilistic reasoning, an approximated model count would
suffice. Let us mention two paradigms originating from prob-
ability theory. The first is based on sampling [33], [34],
while in the second (short) XOR constraints are added to the
formula until it becomes unsatisfiable [35], [36]. Exact and
approximate model counting algorithms are compared in [37].

Alternative methods. All mentioned exact model counters so
far are based on the DPLL algorithm [38] or an enhancement
thereof. An alternative approach consists in compiling the for-
mula into a language in which model counting is tractable [39],
[40] applied in, e.g., conformant planning [41]. In theory
structure-based approaches can for instance also make use of
the community structure of the formula [42] or the structure
of the hypergraph associated with the formula [43], [44].

VIII. CONCLUSION

We have presented a dual procedure for projected model
counting taking into account the formula as well as its
negation. We devised an efficient good learning mechanism
based on the detection of partial models, which is exempt
from satisfiability checks and clause watching. This method
enables the pruning of a potentially large portion of the search
space. Formulae with large satisfying subspaces of the search
space benefit most. For these, the learned goods tend to be
short. We introduced the concepts of flipping and discounting
to remember the models found at the actual decision level. This
allows us to jump back over branches in which models were
found by simply subtracting their count from the number of
models found so far. Completeness of CDCL guarantees that
these models are found again at a later stage. Flipping and
discounting render the use of blocking clauses superfluous and
thus prevent an additional growth of the formula.

We have preliminary ideas on how to handle backjumping
and redundant dual clause learning for dual conflicts. This has
the potential to shrink partial models substantially, particularly
in combination with discounting. In the current calculus this
situation is addressed by backtracking (BN0F and BN0L).

Our method prioritizes decisions of the relevant variables
over the irrelevant variables. By adopting the search strategy
utilized in [13], we might be able to relax this restriction.

Note that with every relevant flipped decision the models grow
larger. We plan to investigate whether overall backjumping
upon a conflict in N can compensate restrictions imposed by
our branching heuristics. Moreover, the algorithm presented
in [13] allows to remove blocking clauses eagerly and explic-
itly as soon they are not needed anymore. This is not captured
in our calculus yet. In our implementation we provide a poor-
man’s version simulating this approach partially, by trying to
subsume previous blocking clauses by a new blocking clause.

Another important future extension of our calculus is to cap-
ture component reasoning, which can give exponential speed-
ups orthogonal to what can be achieved by dual reasoning.

Beside the more technical challenge to improve the CNF
encoding through circuit optimizations and extending and ap-
plying more preprocessing techniques to the generated CNFs
individually, we also want to explore more general preprocess-
ing techniques which jointly work on the dual representation,
taking advantage of the duality property.

Finally, DUALIZA makes it easy to apply model counting
in various domains. This in turn will allow the research
community to obtain interesting model counting benchmarks
and in general encourages more research in model counting.

REFERENCES

[1] D. Roth, “On the hardness of approximate reasoning,” Artif. Intell.,
vol. 82, no. 1-2, pp. 273–302, 1996.

[2] J. Burchard, D. Erb, and B. Becker, “Characterization of possibly
detected faults by accurately computing their detection probability,” in
DATE. IEEE, 2018, pp. 385–390.

[3] F. Biondi, M. A. Enescu, A. Heuser, A. Legay, K. S. Meel, and
J. Quilbeuf, “Scalable approximation of quantitative information flow
in programs,” in VMCAI, ser. LNCS, vol. 10747. Springer, 2018.

[4] S. Kölbl, G. Leander, and T. Tiessen, “Observations on the SIMON
block cipher family,” in CRYPTO (1), ser. LNCS, vol. 9215. Springer,
2015, pp. 161–185.

[5] A. Kübler, C. Zengler, and W. Küchlin, “Model counting in product
configuration,” in LoCoCo 2010, ser. EPTCS, vol. 29, 2010, pp. 44–53.

[6] C. Zengler and W. Küchlin, “Boolean quantifier elimination for auto-
motive configuration - A case study,” in FMICS, ser. LNCS, vol. 8187.
Springer, 2013, pp. 48–62.

[7] R. A. Aziz, G. Chu, C. J. Muise, and P. J. Stuckey, “#∃SAT: Projected
model counting,” in SAT 2015, ser. LNCS, vol. 9340. Springer, 2015,
pp. 121–137.

[8] E. P. Zawadzki, A. Platzer, and G. J. Gordon, “A generalization of SAT
and #SAT for robust policy evaluation,” in IJCAI. IJCAI/AAAI, 2013,
pp. 2583–2590.

[9] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A search algorithm
for propositional satisfiability,” IEEE Trans. Computers, vol. 48, no. 5,
pp. 506–521, 1999.

[10] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in DAC. ACM, 2001.

[11] V. Klebanov, N. Manthey, and C. J. Muise, “SAT-based analysis and
quantification of information flow in programs,” in QEST, ser. LNCS,
vol. 8054. Springer, 2013, pp. 177–192.

[12] O. Grumberg, A. Schuster, and A. Yadgar, “Memory efficient all-
solutions SAT solver and its application for reachability analysis,” in
FMCAD, ser. LNCS, vol. 3312. Springer, 2004, pp. 275–289.

[13] M. Gebser, B. Kaufmann, and T. Schaub, “Solution enumeration for
projected Boolean search problems,” in CPAIOR, ser. LNCS, vol. 5547.
Springer, 2009, pp. 71–86.

[14] E. Birnbaum and E. L. Lozinskii, “The good old Davis-Putnam proce-
dure helps counting models,” J. Artif. Intell. Res. (JAIR), vol. 10, no. 1,
pp. 457–477, 1999.

[15] J.-M. Lagniez and P. Marquis, “On preprocessing techniques and their
impact on propositional model counting,” Journal of Automated Rea-
soning, vol. 58, no. 4, pp. 413–481, Apr 2017.

[16] K. Fazekas, M. Seidl, and A. Biere, “A duality-aware calculus for
quantified Boolean formulas,” in SYNASC 2016. IEEE Computer
Society, 2016, pp. 181–186.

[17] A. Biere, S. Hölldobler, and S. Möhle, “An abstract dual propositional
model counter,” in YSIP2 2017, ser. CEUR Workshop Proceedings, no.
1837, 2017.

[18] R. J. Bayardo and J. D. Pehoushek, “Counting models using connected
components,” in AAAI-00. AAAI Press / The MIT Press, 2000, pp.
157–162.

[19] T. Sang, P. Beame, and H. A. Kautz, “Heuristics for fast exact model
counting,” in SAT, ser. LNCS, vol. 3569. Springer, 2005, pp. 226–240.

[20] M. Thurley, “sharpSAT – counting models with advanced component
caching and implicit BCP,” in SAT 2006, ser. LNCS, vol. 4121.
Springer, 2006, pp. 424–429.

[21] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in SAT 2005, ser. LNCS, F. Bacchus and
T. Walsh, Eds., vol. 3569. Springer, 2005, pp. 61–75.

[22] D. A. Plaisted and S. Greenbaum, “A structure-preserving clause form
translation,” J. Symb. Comput., vol. 2, no. 3, pp. 293–304, 1986.

[23] G. Tseitin, “On the complexity of derivation in propositional calculus,”
Studies in Constructive Mathematics and Mathematical Logic, pp. 115–
125, 1968.

[24] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT
Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland
procedure to DPLL(T),” J. ACM, vol. 53, no. 6, pp. 937–977, 2006.

[25] S. Hölldobler, N. Manthey, T. Philipp, and P. Steinke, “Generic CDCL
- A formalization of modern propositional satisfiability solvers,” in
POS@SAT, ser. EPiC Series in Computing, vol. 27. EasyChair, 2014.

[26] A. Goultiaeva and F. Bacchus, “Exploiting QBF duality on a circuit
representation,” in AAAI. AAAI Press, 2010.

[27] A. Goultiaeva, M. Seidl, and A. Biere, “Bridging the gap between dual
propagation and CNF-based QBF solving,” in DATE. EDA Consortium
San Jose, CA, USA / ACM DL, 2013, pp. 811–814.

[28] R. Brummayer, F. Lonsing, and A. Biere, “Automated testing and
debugging of SAT and QBF solvers,” in SAT 2010, ser. LNCS, vol.
6175. Springer, 2010, pp. 44–57.

[29] A. Biere, “The AIGER And-Inverter Graph (AIG) format version
20071012,” FMV Reports Series, Institute for Formal Models and
Verification, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz,
Austria, Tech. Rep., 2007.

[30] J. Burchard, T. Schubert, and B. Becker, “Laissez-faire caching for
parallel #SAT solving,” in SAT 2015, ser. LNCS, vol. 9340. Springer,
2015, pp. 46–61.

[31] ——, “Distributed parallel #SAT solving,” in CLUSTER. IEEE
Computer Society, 2016, pp. 326–335.

[32] A. J. d. R. Morgado and J. Marques-Silva, “Algorithms for propositional
model enumeration and counting,” INESC-ID, Tech. Rep. 39, Feb 2005.

[33] S. Chakraborty, K. S. Meel, and M. Y. Vardi, “A scalable approximate
model counter,” in CP, ser. LNCS, vol. 8124. Springer, 2013.

[34] C. P. Gomes, J. Hoffmann, A. Sabharwal, and B. Selman, “From
sampling to model counting,” in IJCAI 2007, 2007, pp. 2293–2299.

[35] D. Achlioptas and P. Theodoropoulos, “Probabilistic model counting
with short XORs,” in SAT, ser. LNCS, vol. 10491. Springer, 2017.

[36] C. P. Gomes, A. Sabharwal, and B. Selman, “Model counting: A new
strategy for obtaining good bounds,” in AAAI. AAAI Press, 2006.

[37] ——, “Model counting,” in Handbook of Satisfiability, ser. Frontiers in
Artificial Intelligence and Applications, 2009, vol. 185, pp. 633–654.

[38] M. Davis, G. Logemann, and D. W. Loveland, “A machine program for
theorem-proving,” Commun. ACM, vol. 5, no. 7, pp. 394–397, 1962.

[39] P. Beame and V. Liew, “New limits for knowledge compilation and
applications to exact model counting,” in UAI. AUAI Press, 2015.

[40] A. Darwiche and P. Marquis, “A knowledge compilation map,” JAIR,
vol. 17, pp. 229–264, 2002.

[41] H. Palacios, B. Bonet, A. Darwiche, and H. Geffner, “Pruning confor-
mant plans by counting models on compiled d-DNNF representations,”
in ICAPS. AAAI, 2005, pp. 141–150.

[42] R. Ganian and S. Szeider, “Community structure inspired algorithms for
SAT and #SAT,” in SAT 2015, ser. LNCS, vol. 9340. Springer, 2015,
pp. 223–237.

[43] F. Capelli, A. Durand, and S. Mengel, “Hypergraph acyclicity and
propositional model counting,” in SAT 2014, ser. LNCS, vol. 8561.
Springer, 2014, pp. 399–414.

[44] F. Capelli, “Understanding the complexity of #SAT using knowledge
compilation,” in LICS. IEEE Computer Society, 2017, pp. 1–10.

