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Projected Model Counting Generalized

F (X ,Y ) (arbitrary) propositional formula over variables X and Y with X ∩ Y = ∅

X relevant input variables
Y irrelevant input variables

We are interested in the number of models projected onto X :

#∃Y .F (X ,Y )

Example F (X ,Y ) = x ∨ y

X = {x}
X = {x , y}

Y = {y}
Y = ∅

M(∃Y .F (X ,Y )) = {x ,¬x}
M(∃Y .F (X ,Y )) = {xy , x¬y ,¬xy}

#∃Y .F (X ,Y ) = 2

#∃Y .F (X ,Y ) = 3 = #F (X ,Y )
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Particular Challenges in #SAT

I The search space needs to be traversed exhaustively.

I CDCL is biased towards conflicts.

I Blocking clauses blow up the formula.

I The addition of large clauses slows down the solver.

I Satisfiability checks and clause watching mechanisms are expensive.
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Our Dual Approach Facilitates the Detection of Partial Models

$ cat clause.form

p | q | r | s

$ dualiza -e -r p,r,s clause.form

ALL SATISFYING ASSIGNMENTS

s

r !s

!r !s

$ dualiza -r p,r,s clause.form

NUMBER SATISFYING ASSIGNMENTS

8

$ dualiza -r p,r,s clause.form -l | grep RULE

c LOG 1 RULE UNX 1 -4

c LOG 1 RULE UNX 2 -4

c LOG 1 RULE BN0F 1 -4

c LOG 2 RULE UNX 3 -3

c LOG 2 RULE BN0F 2 -3

c LOG 3 RULE UNY 1 -2

c LOG 3 RULE EN0 1
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Dual Representation of F (X ,Y )

P(X ,Y )

≡
F (X ,Y )

N(X ,Y )

≡

¬F (X ,Y )
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Dual Representation of F (X ,Y )

∃S .P(X ,Y , S)

≡
F (X ,Y )

∃T .N(X ,Y ,T )

≡

¬F (X ,Y )
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The General Case — Duality with Projection onto Relevant Input Variables

∃Y , S .P(X ,Y , S)

≡
∃Y .F (X ,Y )

∃Y ,T .N(X ,Y ,T )

≡

∃Y .¬F (X ,Y )
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A First Example

F (X ,Y ) = (p ∨ q ∨ r ∨ s)

P(X ,Y , S) = (p ∨ q ∨ r ∨ s)
N(X ,Y ,T ) = (¬p) ∧ (¬q) ∧ (¬r) ∧ (¬s)

X = {p, r , s} Y = {q}

S = ∅
T = ∅

Step Rule I P |I N |I M Found

0 () (p ∨ q ∨ r ∨ s) (¬p) ∧ (¬q) ∧ (¬r) ∧ (¬s) 0

1 UNXY s ∅ (¬p) ∧ (¬q) ∧ (¬r) ∧ () 0

2 BN0F ¬s (p ∨ q ∨ r) (¬p) ∧ (¬q) ∧ (¬r) 4 s

3 UNXY ¬sr ∅ (¬p) ∧ (¬q) ∧ () 4

4 BN0F ¬s¬r (p ∨ q) (¬p) ∧ (¬q) 6 ¬sr
5 UNXY ¬s¬rq ∅ (¬p) ∧ () 6

6 EN0 ¬s¬rq ∅ (¬p) ∧ () 8 ¬s¬r
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With the Non-Dual Approach Only Total Models Are Detected

F (X ,Y ) = (p ∨ q ∨ r ∨ s)
P(X ,Y , S) = (p ∨ q ∨ r ∨ s)

X = {p, r , s} Y = {q}
S = ∅

Step Rule I P |I M Found

0 () (p ∨ q ∨ r ∨ s) 0

1 DX s ∅ 0

2 DX sr ∅ 0

3 DX srp ∅ 0

4 DYS srpq ∅ 0

5 BP1F sr¬p ∅ 1 srp

6 DYS sr¬pq ∅ 1

7 BP1F s¬r ∅ 2 srp

8 DX s¬rp ∅ 2

9 DYS s¬rpq ∅ 2

10 BP1F s¬r¬p ∅ 3 s¬rp
11 DYS s¬r¬pq ∅ 3

12 BP1F ¬s (p ∨ q ∨ r) 4 s¬r¬p
...

14



With the Non-Dual Approach Only Total Models Are Detected

F (X ,Y ) = (p ∨ q ∨ r ∨ s)
P(X ,Y , S) = (p ∨ q ∨ r ∨ s)

X = {p, r , s} Y = {q}
S = ∅

Step Rule I P |I M Found

0 () (p ∨ q ∨ r ∨ s) 0

1 DX s ∅ 0

2 DX sr ∅ 0

3 DX srp ∅ 0

4 DYS srpq ∅ 0

5 BP1F sr¬p ∅ 1 srp

6 DYS sr¬pq ∅ 1

7 BP1F s¬r ∅ 2 srp

8 DX s¬rp ∅ 2

9 DYS s¬rpq ∅ 2

10 BP1F s¬r¬p ∅ 3 s¬rp
11 DYS s¬r¬pq ∅ 3

12 BP1F ¬s (p ∨ q ∨ r) 4 s¬r¬p
...

14



Can We Compete with State-of-the-Art #SAT Solvers?

$ cat clause4.form

(x1 | x2 | x3 | x4)

n Mode sharpSAT [s] Dualiza [s]

dual < 1 · 10−2 < 1 · 10−2

block < 1 · 10−2 2 · 10−210

flip < 1 · 10−2 < 1 · 10−2

block 1 · 10−2 9 · 10−1

20
flip 1 · 10−2 2 · 10−1

block 1 · 10−2 4 · 104

30
flip 1 · 10−2 2 · 102

100 dual < 1 · 10−2 < 1 · 10−2

1000 dual 8 · 10−2 2 · 10−2

10000 dual 1 · 101 2 · 10−1
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Where Our Dual Approach Really Wins

$ cat nrp4.form

(x1 | x2 | x3 | x4) |

(x5 = x2 ^ x3 ^ x4) |

(x6 = x1 ^ x3 ^ x4) |

(x7 = x1 ^ x2 ^ x4) |

(x8 = x1 ^ x2 ^ x3)

n Method sharpSAT [s] Dualiza [s]

10 dual 9 · 10−2 < 1 · 10−2

20 dual 7 · 102 1 · 10−2

21 dual 2 · 103 1 · 10−2

22 dual * 1 · 10−2

100 dual * 8 · 10−2

1000 dual * 1 · 101

5000 dual * 2 · 102
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Our Contribution — the First Dual Calculus for Exact Projected Model Counting

EP0: (P ,N , I ,M) ;EP0 M if ∅ ∈ P |I and decs(I ) = ∅

EP1: (P ,N , I ,M) ;EP1 M + 2|X−I | if P |I = ∅ and var(decs(I )) ∩ X = ∅

EN0: (P ,N , I ,M) ;EN0 M + 2|X−I | if ∅ ∈ N |I and var(decs(I )) ∩ X = ∅

BP0F: (P ,N , I `d I ′,M) ;BP0F (P ,N , I `
f (m′)

,M) if ∅ ∈ P |I `I ′ and var(decs(I ′)) = ∅ and

m′ =
∑
{m | `f (m) ∈ I ′}

JP0: (P ,N , II ′,M) ;JP0 (P ∧ C r ,N , I `′,M −m′) if ∅ ∈ P |II ′ and P |= C and C |I = { `′ } and

m′ =
∑
{m | `f (m) ∈ I ′}

BP1F: (P ,N , I `d I ′,M) ;BP1F (P ,N , I `
f (m′+m′′)

,M + m′′) if P |I `I ′ = ∅ and var(`) ∈ X and

var(decs(I ′)) ∩ X = ∅ and m′ =
∑
{m | `f (m) ∈ I ′} and m′′ = 2|X−I `I

′|

BP1L: (P ,N , I `d I ′,M) ;BP1L (P ∧ D,N , I `,M + m′′) if P |I `I ′ = ∅ and var(`) ∈ X and

var(decs(I ′)) ∩ X = ∅ and m′′ = 2|X−I `I
′| and D = π(¬decs(I `),X )
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Our Contribution — the First Dual Calculus for Exact Projected Model Counting

BN0F: (P ,N , I `d I ′,M) ;BN0F (P ,N , I `
f (m′+m′′)

,M + m′′) if ∅ ∈ N |I `I ′ and var(`) ∈ X and

var(decs(I ′)) ∩ X = ∅ and m′ =
∑
{m | `f (m) ∈ I ′} and m′′ = 2|X−I `I

′|

BN0L: (P ,N , I `d I ′,M) ;BN0L (P ∧ D,N , I `,M + m′′) if ∅ ∈ N |I `I ′ and var(`) ∈ X and

var(decs(I ′)) ∩ X = ∅ and m′′ = 2|X−I `I
′| and D = π(¬decs(I `),X )

DX: (P ,N , I ,M) ;DX (P ,N , I `d ,M) if ∅ 6∈ (P ∧ N)|I and units((P ∧ N)|I ) = ∅ and
var(`) ∈ X − I

DYS: (P ,N , I ,M) ;DYS (P ,N , I `d ,M) if ∅ 6∈ (P ∧ N)|I and units((P ∧ N)|I ) = ∅ and
var(`) ∈ (Y ∪ S)− I and X − I = ∅

UP: (P ,N , I ,M) ;UP (P ,N , I `,M) if {`} ∈ P |I

UNXY: (P ,N , I ,M) ;UNXY (P ,N , I `
d
,M) if {`} ∈ N |I and var(`) ∈ X ∪ Y and ∅ 6∈ P |I and units(P |I ) = ∅

UNT: (P ,N , I ,M) ;UNT (P ,N , I `,M) if {`} ∈ N |I and var(`) ∈ T and ∅ 6∈ P |I and units(P |I ) = ∅

FP: (P ∧ C r ,N , I ,M) ;FP (P ,N , I ,M) if ∅ 6∈ P |I
18



Our Contribution — the First Dual Calculus for Exact Projected Model Counting

I dual representation of the formula enabling the detection of partial models and subsequent pruning of the search space

I good learning mechanism exempt from satisfiability checks and clause watching mechanisms

I significant performance gain compared to non-dual variant

I accepts arbitrary formulae and circuits as argument

I novel techniques for preventing multiple model counts: flipping and discounting

I models state-of-the-art techniques: conflict analysis and conflict-driven backjumping

I robust and carefully tested implementation: Dualiza
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Conclusion and Future Work

We are on the right track

I Dualiza is competitive on some CNF formulae and

I outperforms state-of-the-art #SAT solvers on another class of formulae.

In the near future, we plan to

I incorporate dual conflict analysis with backjumping and redundant clause learning,

I drop decision restrictions,

I capture component reasoning and

I weighted projected model counting for Bayesian reasoning,

I optimize circuit representation to improve CNF encoding, and

I explore dual preprocessing techniques.
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