Dualizing Projected Model Counting

Sibylle Möhle and Armin Biere

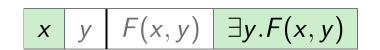
Institute for Formal Models and Verification Johannes Kepler University Linz

30th International Conference on Tools with Artificial Intelligence November 7, 2018

x	y	F(x,y)
0	0	0
0	1	1
1	0	1
1	1	1

x	y	F(x,y)
0	0	0
0	1	1
1	0	1
1	1	1

$$\mathcal{M}(F(x,y)) = \{\neg xy, x\neg y, xy\}$$



X	У	F(x, y)	$\exists y.F(x,y)$
0	0	0	1
0	1	1	L
1	0	1	1
1	1	1	T

x	У	F(x, y)	$\exists y.F(x,y)$
0	0	0	1
0	1	1	L
1	0	1	1
1	1	1	T

 $\mathcal{M}(\exists y.F(x,y)) = \{\neg x,x\}$

F(X, Y) (arbitrary) propositional formula over variables X and Y with $X \cap Y = \emptyset$

- *X* relevant input variables
- *Y irrelevant* input variables

F(X, Y) (arbitrary) propositional formula over variables X and Y with $X \cap Y = \emptyset$

- *X* relevant input variables
- *Y irrelevant* input variables

We are interested in the number of models projected onto X:

 $\#\exists Y.F(X, Y)$

F(X, Y) (arbitrary) propositional formula over variables X and Y with $X \cap Y = \emptyset$

- *X* relevant input variables
- *Y irrelevant* input variables

We are interested in the number of models projected onto X:

 $\#\exists Y.F(X,Y)$

Example
$$F(X, Y) = x \lor y$$
 $X = \{x\}$ $Y = \{y\}$ $\mathcal{M}(\exists Y.F(X, Y)) = \{x, \neg x\}$ $\#\exists Y.F(X, Y) = 2$

F(X, Y) (arbitrary) propositional formula over variables X and Y with $X \cap Y = \emptyset$

- *X* relevant input variables
- *Y irrelevant* input variables

We are interested in the number of models projected onto X:

 $\#\exists Y.F(X,Y)$

Example $F(X, Y) = x \lor y$

$$\mathcal{M}(\exists Y.F(X,Y)) = \{x, \neg x\}\ \mathcal{M}(\exists Y.F(X,Y)) = \{xy, x \neg y, \neg xy\}$$

$$\#\exists Y.F(X, Y) = 2$$

 $\#\exists Y.F(X, Y) = 3 = \#F(X, Y)$

► The search space needs to be traversed exhaustively.

- ► The search space needs to be traversed exhaustively.
- ► CDCL is biased towards conflicts.

- ► The search space needs to be traversed exhaustively.
- ► CDCL is biased towards conflicts.
- Blocking clauses blow up the formula.

- ► The search space needs to be traversed exhaustively.
- ► CDCL is biased towards conflicts.
- Blocking clauses blow up the formula.
- ► The addition of large clauses slows down the solver.

- ► The search space needs to be traversed exhaustively.
- ► CDCL is biased towards conflicts.
- Blocking clauses blow up the formula.
- ► The addition of large clauses slows down the solver.
- Satisfiability checks and clause watching mechanisms are expensive.

Our Dual Approach Facilitates the Detection of Partial Models

```
$ cat clause.form
p | q | r | s
$ dualiza -e -r p,r,s clause.form
ALL SATISFYING ASSIGNMENTS
s
r !s
!r !s
$ dualiza -r p,r,s clause.form
NUMBER SATISFYING ASSIGNMENTS
8
```

```
$ dualiza -r p,r,s clause.form -1 | grep RULE
c LOG 1 RULE UNX 1 -4
c LOG 1 RULE UNX 2 -4
c LOG 1 RULE BNOF 1 -4
c LOG 2 RULE UNX 3 -3
c LOG 2 RULE BNOF 2 -3
c LOG 3 RULE UNY 1 -2
c LOG 3 RULE ENO 1
```

Dual Representation of F(X, Y)

Dual Representation of F(X, Y)

The General Case — Duality with Projection onto Relevant Input Variables

A First Example

$$F(X, Y) = (p \lor q \lor r \lor s)$$
 $X = \{p, r, s\}$ $Y = \{q\}$ $P(X, Y, S) = (p \lor q \lor r \lor s)$ $S = \emptyset$ $N(X, Y, T) = (\neg p) \land (\neg q) \land (\neg r) \land (\neg s)$ $T = \emptyset$

A First Example

$$F(X, Y) = (p \lor q \lor r \lor s)$$
 $X = \{p, r, s\}$ $Y = \{q\}$ $P(X, Y, S) = (p \lor q \lor r \lor s)$ $S = \emptyset$ $N(X, Y, T) = (\neg p) \land (\neg q) \land (\neg r) \land (\neg s)$ $T = \emptyset$

Step	Rule	1	$P _I$	$N _{I}$	М	Found
0		()	$(p \lor q \lor r \lor s)$	$(eg p) \wedge (eg q) \wedge (eg r) \wedge (eg s)$	0	
1	UNXY	5	Ø	$(\neg p) \wedge (\neg q) \wedge (\neg r) \wedge ()$	0	
2	BN0F	$\neg s$	$(p \lor q \lor r)$	$(\neg p) \wedge (\neg q) \wedge (\neg r)$	4	5
3	UNXY	<i>¬sr</i>	Ø	$(\neg p) \land (\neg q) \land ()$	4	
4	BN0F	<i>¬s¬r</i>	$(p \lor q)$	$(\neg p) \wedge (\neg q)$	6	¬sr
5	UNXY	$\neg s \neg rq$	Ø	$(\neg ho) \wedge ()$	6	
6	EN0	<i>¬s</i> ¬ <i>rq</i>	Ø	$(\neg ho) \land ()$	8	$\neg s \neg r$

With the Non-Dual Approach Only Total Models Are Detected

$$\begin{aligned} F(X,Y) &= (p \lor q \lor r \lor s) \\ P(X,Y,S) &= (p \lor q \lor r \lor s) \end{aligned} \qquad \begin{array}{ll} X &= \{p,r,s\} \\ S &= \emptyset \end{aligned} \qquad \begin{array}{ll} Y &= \{q\} \\ S &= \emptyset \end{aligned}$$

With the Non-Dual Approach Only Total Models Are Detected

$$F(X, Y) = (p \lor q \lor r \lor s)$$
 $X = \{p, r, s\}$ $Y = \{q\}$ $P(X, Y, S) = (p \lor q \lor r \lor s)$ $S = \emptyset$

Step	Rule	1	$P _I$	М	Found
0		()	$(p \lor q \lor r \lor s)$	0	
1	DX	S	Ø	0	
2	DX	sr	Ø	0	
3	DX	srp	Ø	0	
4	DYS	srpq	Ø	0	
5	BP1F	<i>sr</i> ¬p	Ø	1	srp
6	DYS	<i>sr</i> ¬pq	Ø	1	
7	BP1F	s¬r	Ø	2	sr p
8	DX	s¬rp	Ø	2	
9	DYS	s¬rpq	Ø	2	
10	BP1F	s¬r¬p	Ø	3	s¬rp
11	DYS	s¬r¬pq	Ø	3	
12	BP1F	$\neg s$	$(p \lor q \lor r)$	4	s¬r¬p
:					

Can We Compete with State-of-the-Art #SAT Solvers?

\$ cat clause4.form
(x1 | x2 | x3 | x4)

Can We Compete with State-of-the-Art #SAT Solvers?

\$ cat clause4.form
(x1 | x2 | x3 | x4)

n	Mode	sharpSAT [s]	DUALIZA [s]
	dual	$< 1\cdot 10^{-2}$	$< 1 \cdot 10^{-2}$
10	block	$< 1\cdot 10^{-2}$	$2 \cdot 10^{-2}$
	flip	$< 1\cdot 10^{-2}$	$< 1\cdot 10^{-2}$
20	block	$1 \cdot 10^{-2}$	$9\cdot 10^{-1}$
20	flip	$1\cdot 10^{-2}$	$2\cdot 10^{-1}$
30	block	$1 \cdot 10^{-2}$	$4\cdot 10^4$
	flip	$1\cdot 10^{-2}$	$2\cdot 10^2$
100	dual	$< 1 \cdot 10^{-2}$	$< 1\cdot 10^{-2}$
1000	dual	$8 \cdot 10^{-2}$	$2 \cdot 10^{-2}$
10000	dual	$1\cdot 10^1$	$2\cdot 10^{-1}$

Where Our Dual Approach Really Wins

\$ cat nrp4.form (x1 | x2 | x3 | x4) | (x5 = x2 ^ x3 ^ x4) | (x6 = x1 ^ x3 ^ x4) | (x7 = x1 ^ x2 ^ x4) | (x8 = x1 ^ x2 ^ x3)

Where Our Dual Approach Really Wins

\$	Са	at	nrp	54	.for	<u>c</u> m		
(2	τ1		x2		xЗ		x4)	
(2	٢5	=	x2	^	xЗ	^	x4)	
(2	6۷	=	x1	^	xЗ	^	x4)	
(2	κ7	=	x1	^	x2	^	x4)	
(2	8۷	=	x1	^	x2	^	x3)	

n	Method	sharpSAT [s]	DUALIZA [s]
10	dual	$9 \cdot 10^{-2}$	$< 1\cdot 10^{-2}$
20	dual	$7\cdot 10^2$	$1\cdot 10^{-2}$
21	dual	$2\cdot 10^3$	$1\cdot 10^{-2}$
22	dual	*	$1\cdot 10^{-2}$
100	dual	*	$8\cdot 10^{-2}$
1000	dual	*	$1\cdot 10^1$
5000	dual	*	$2\cdot 10^2$

EP0:
$$(P, N, I, M) \sim_{\text{EP0}} M$$
 if $\emptyset \in P|_I$ and $\operatorname{decs}(I) = \emptyset$
EP1: $(P, N, I, M) \sim_{\text{EP1}} M + 2^{|X-I|}$ if $P|_I = \emptyset$ and $\operatorname{var}(\operatorname{decs}(I)) \cap X = \emptyset$
EN0: $(P, N, I, M) \sim_{\text{EN0}} M + 2^{|X-I|}$ if $\emptyset \in N|_I$ and $\operatorname{var}(\operatorname{decs}(I)) \cap X = \emptyset$
BP0F: $(P, N, I\ell^d I', M) \sim_{\text{BP0F}} (P, N, I\bar{\ell}^{f(m')}, M)$ if $\emptyset \in P|_{I\ell I'}$ and $\operatorname{var}(\operatorname{decs}(I')) = \emptyset$ and $m' = \sum \{m \mid \ell^{f(m)} \in I'\}$
JP0: $(P, N, II', M) \sim_{\text{JP0}} (P \wedge C^r, N, I\ell', M - m')$ if $\emptyset \in P|_{II'}$ and $P \models C$ and $C|_I = \{\ell'\}$ and $m' = \sum \{m \mid \ell^{f(m)} \in I'\}$

 $\begin{array}{rcl} \mathsf{BP1F:} \left(P, N, I\ell^{d}I', M\right) & \leadsto_{\mathsf{BP1F}} \left(P, N, I\overline{\ell}^{f(m'+m'')}, M+m''\right) & \text{if } P|_{I\ell I'} = \emptyset \text{ and } \operatorname{var}(\ell) \in X \text{ and} \\ \operatorname{var}(\operatorname{decs}(I')) \cap X = \emptyset \text{ and } m' = \sum \left\{m \mid \ell^{f(m)} \in I'\right\} \text{ and } m'' = 2^{|X-I\ell I'|} \end{array}$

 $\begin{array}{ll} \mathsf{BP1L:} \left(P, N, I\ell^d I', M\right) \rightsquigarrow_{\mathsf{BP1L}} \left(P \land D, N, I\overline{\ell}, M + m''\right) & \text{if } P|_{I\ell I'} = \emptyset \text{ and } \operatorname{var}(\ell) \in X \text{ and} \\ \operatorname{var}(\operatorname{decs}(I')) \cap X = \emptyset \text{ and } m'' = 2^{|X - I\ell I'|} \text{ and } D = \pi(\neg \operatorname{decs}(I\ell), X) \end{array}$

- BNOF: $(P, N, I\ell^d I', M) \rightsquigarrow_{BNOF} (P, N, I\overline{\ell}^{f(m'+m'')}, M+m'')$ if $\emptyset \in N|_{I\ell I'}$ and $var(\ell) \in X$ and $var(decs(I')) \cap X = \emptyset$ and $m' = \sum \{m \mid \ell^{f(m)} \in I'\}$ and $m'' = 2^{|X-I\ell I'|}$
- BNOL: $(P, N, I\ell^d I', M) \sim_{BNOL} (P \land D, N, I\overline{\ell}, M + m'')$ if $\emptyset \in N|_{I\ell I'}$ and $var(\ell) \in X$ and $var(decs(I')) \cap X = \emptyset$ and $m'' = 2^{|X I\ell I'|}$ and $D = \pi(\neg decs(I\ell), X)$
- DX: $(P, N, I, M) \rightsquigarrow_{DX} (P, N, I\ell^d, M)$ if $\emptyset \notin (P \land N)|_I$ and $units((P \land N)|_I) = \emptyset$ and $var(\ell) \in X I$
- DYS: $(P, N, I, M) \rightsquigarrow_{\text{DYS}} (P, N, I\ell^d, M)$ if $\emptyset \notin (P \land N)|_I$ and $\text{units}((P \land N)|_I) = \emptyset$ and $\text{var}(\ell) \in (Y \cup S) I$ and $X I = \emptyset$

UP: $(P, N, I, M) \sim_{\mathsf{UP}} (P, N, I\ell, M)$ if $\{\ell\} \in P|_I$

 $\mathsf{UNXY}:(P,N,I,M) \rightsquigarrow_{\mathsf{UNXY}} (P,N,I\overline{\ell}^d,M) \text{ if } \{\ell\} \in N|_I \text{ and } \mathrm{var}(\ell) \in X \cup Y \text{ and } \emptyset \not\in P|_I \text{ and } \mathrm{units}(P|_I) = \emptyset$

UNT: $(P, N, I, M) \rightsquigarrow_{\text{UNT}} (P, N, I\ell, M)$ if $\{\ell\} \in N|_I$ and $\operatorname{var}(\ell) \in T$ and $\emptyset \notin P|_I$ and $\operatorname{units}(P|_I) = \emptyset$

FP: $(P \land C^r, N, I, M) \rightsquigarrow_{\mathsf{FP}} (P, N, I, M)$ if $\emptyset \notin P|_I$

- dual representation of the formula enabling the detection of partial models and subsequent pruning of the search space
- good learning mechanism exempt from satisfiability checks and clause watching mechanisms
- significant performance gain compared to non-dual variant

- dual representation of the formula enabling the detection of partial models and subsequent pruning of the search space
- good learning mechanism exempt from satisfiability checks and clause watching mechanisms
- significant performance gain compared to non-dual variant
- accepts arbitrary formulae and circuits as argument

- dual representation of the formula enabling the detection of partial models and subsequent pruning of the search space
- good learning mechanism exempt from satisfiability checks and clause watching mechanisms
- significant performance gain compared to non-dual variant
- accepts arbitrary formulae and circuits as argument
- novel techniques for preventing multiple model counts: *flipping* and *discounting*
- models state-of-the-art techniques: conflict analysis and conflict-driven backjumping

- dual representation of the formula enabling the detection of partial models and subsequent pruning of the search space
- good learning mechanism exempt from satisfiability checks and clause watching mechanisms
- significant performance gain compared to non-dual variant
- accepts arbitrary formulae and circuits as argument
- novel techniques for preventing multiple model counts: *flipping* and *discounting*
- models state-of-the-art techniques: conflict analysis and conflict-driven backjumping
- ► robust and carefully tested implementation: DUALIZA

Conclusion and Future Work

We are on the right track

- ► DUALIZA is competitive on some CNF formulae and
- ▶ outperforms state-of-the-art #SAT solvers on another class of formulae.

Conclusion and Future Work

We are on the right track

- \blacktriangleright DUALIZA is competitive on some CNF formulae and
- ▶ outperforms state-of-the-art #SAT solvers on another class of formulae.

In the near future, we plan to

- ▶ incorporate dual conflict analysis with backjumping and redundant clause learning,
- drop decision restrictions,
- capture component reasoning and
- weighted projected model counting for Bayesian reasoning,
- optimize circuit representation to improve CNF encoding, and
- explore dual preprocessing techniques.