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Projected Model Counting Generalized

F(X,Y) (arbitrary) propositional formula over variables X and Y with X NY = ()

X  relevant input variables
Y  irrelevant input variables

We are interested in the number of models projected onto X:

4IY .F(X,Y)

Example F(X,Y)=xVy

{y} M@EY.F(X,Y)) = {x,~x}
0 MEY.F(X,Y)) = {xy,xy, xy}

X = {x} Y
X ={x,y} Y
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Particular Challenges in #£SAT

» The search space needs to be traversed exhaustively.
» CDCL is biased towards conflicts.

» Blocking clauses blow up the formula.

» The addition of large clauses slows down the solver.

» Satisfiability checks and clause watching mechanisms are expensive.



Our Dual Approach Facilitates the Detection of Partial Models

$ cat clause.form $ dualiza -r p,r,s clause.form -1 | grep RULE
plaglzrls c LOG 1 RULE UNX 1 -4

$ dualiza -e -r p,r,s clause.form c LOG 1 RULE UNX 2 -4

ALL SATISFYING ASSIGNMENTS c LOG 1 RULE BNOF 1 -4

S c LOG 2 RULE UNX 3 -3

r !s c LOG 2 RULE BNOF 2 -3

I'r Is c LOG 3 RULE UNY 1 -2

$ dualiza -r p,r,s clause.form c LOG 3 RULE ENO 1

NUMBER SATISFYING ASSIGNMENTS
3



Dual Representation of F(X,Y)
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Dual Representation of F(X,Y)

3S.P(X,Y,S)

F(X,Y)

IT.N(X, Y, T)

—F(X,Y)
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The General Case — Duality with Projection onto Relevant Input Variables

3Y,S.P(X,Y,S) Y, T.N(X, Y, T)

IY.F(X,Y) JY.~F(X,Y)
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A First Example
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13



A First Example

(=p) A (—g) A (—r) A (—s)

Y =1{q}

Found

F(X,Y)
P(X,Y,S) =
NX,Y, T)=
Step Rule
0
1 UNXY
2 BNOF
3 UNXY
4 BNOF
5 UNXY
6 ENO

o oo~ p~ O o

—Sr

—STr




With the Non-Dual Approach Only Total Models Are Detected

FIX.Y)=(pVaVrVs) X ={p.r.s}
P(X,Y,S)=(pVqVrVs) S=1

Y ={q}
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With the Non-Dual Approach Only Total Models Are Detected

FIX,Y)=(pVqVrVs) X={p,r,s} Y ={q}
P(X,Y,S)=(pVqVrVs) S=1
Step Rule / Pl M Found
0 () (pVagVrVs) 0
1 DX s 0 0
2 DX sr 0 0
3 DX srp 0 0
4 DYS srpq 0 0
5 BP1F sr—p 0 1 srp
6 DYS sr—pq 0 1
7 BP1F s—r 0 2 srp
8 DX s—rp 0 2
9 DYS s—rpq 0 2
10 BP1F s—r—p 0 3 s—rp
11 DYS s—r—pq 0 3
12 BP1F —s (pVagVr) 4 s—r—p
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Can We Compete with State-of-the-Art #SAT Solvers?

$ cat clause4d.form
(x1 | x2 | x3 | x4)
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Can We Compete with State-of-the-Art #SAT Solvers?

$ cat clause4d.form
(x1 | x2 | x3 | x4)

n Mode | sharpSAT [s] DUALIZA [s]
dual <1-1072 <1-107?
10 block <1-107? 2.1072
flip <1-1072 <1-1072
20 block 1-1072 9.101
flip 1-102 2.1071
- b!ock 1-1072 4.10*
flip 1-1072 2.10?
100 dual <1-107? <1-107?
1000 dual 8-1072 2.1072
10000 | dual 1-10} 2.1071
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Where Our Dual Approach Really Wins

$ cat
(x1 |
(x5 =
(x6 =
(x7 =
(x8 =

nrp4.

x2 |

x1 ~

x1 ~

form
x3 |

x3 ~

x2 ~

x4)
x4)
x4)
x4)
x3)
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Where Our Dual Approach Really Wins

$ cat
(x1 |

(x6 =
(x7 =
(x8 =

nrp4.

x2 |

x1 ~

x1

form
x3 |

x2 ~

x4)
x4)
x4)
x4)
x3)

n Method sharpSAT [s] DUALIZA [s]
10 dual 9.1072 <1-107°
20 dual 7-10? 1-1072
21 dual 2.10° 1-102
22 dual ¥ 1-107°
100 dual ¥ 8.107?
1000 | dual * 1-10!

5000 @ dual ¥ 2107
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Our Contribution — the First Dual Calculus for Exact Projected Model Counting

EPO: (P,N,I,M) ~sgpg M if () € P|; and decs(/) =)
EP1: (P,N,I,M) ~sgpy M +2X=1if Pl =0 and var(decs(/)) N X =0

ENO: (P, N,I,M) ~sgnog M+2X11if e N|; and var(decs(/))NX =0

BPOF: (P, N, 109", M) ~sgpor (P, N, /Z“’”/), M) if 0 € Pl and var(decs(/’)) =0 and
m =3 {m|flm c |}

JPO: (PN, I, M) ~sypo (PAC NI, M—m) if Q€ Py and P=C and C|;={¢} and
m =3 {m|ffm e "

(m'+m

BPIF: (P, N, 1071, M) ~gpir (PN, 1T ™) M4 m") it Plyy—=0 and var(f) € X and
var(decs(I'))NX =0 and m" => {m| ¢fm) 'Yy and m" = oIX=1tr

BP1L: (P, N, 1091, M) ~sgpit (PAD,N, 1L, M+ m") if Plyy=0 and var(f) € X and
var(decs(/)) N X =0 and m" = 2% and D = 7(—decs(/¢), X)
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Our Contribution — the First Dual Calculus for Exact Projected Model Counting

(m'+m

BNOF: (P, N, 1697, M) ~sgnor (PN IZ ™™™ M4+ m") if 0e N[y and var(d) € X and
var(decs(I'))NX =0 and m => {m| ¢fm) 'ty and m" = DIX=1tl

BNOL: (P, N, 041", M) ~sgnor (PAD,N,IL,M+m") if 0 & N|y and var(f) € X and
var(decs(I')) N X =0 and m" = 2X"""1 and D = w(—decs(1£), X)

DX:  (P,N,I,M) ~spx (P,N,1t4, M) if @& (PAN), and units((P A N)|;) =0 and
var(¢) € X — |

DYS: (P,N,I,M) ~opys (P,N, 1t M) if O&(PAN)|, and units((P A N)|;) =0 and
var(f) e (YUS)—1 and X —1=10

Up: (PN, I,M) ~yp (P,N,1¢,M) if {l} € P|

UNXY: (P, N, I, M) ~ynxy (P, N, Izd,M) if {{} € N| and var({) e XUY and 0 & P|; and units(P|;) =0
UNT: (P,N,I,M) ~synt (P,N,16,M) if {f} € N| and var(f) € T and 0 & P|; and units(P|;) = ()

FP: (PAC NI, M) ~gp (PN, I,M) if P
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Our Contribution — the First Dual Calculus for Exact Projected Model Counting

» dual representation of the formula enabling the detection of partial models and subsequent pruning of the search space
» good learning mechanism exempt from satisfiability checks and clause watching mechanisms

» significant performance gain compared to non-dual variant
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Our Contribution — the First Dual Calculus for Exact Projected Model Counting

dual representation of the formula enabling the detection of partial models and subsequent pruning of the search space
good learning mechanism exempt from satisfiability checks and clause watching mechanisms

significant performance gain compared to non-dual variant

accepts arbitrary formulae and circuits as argument

novel techniques for preventing multiple model counts: flipping and discounting

models state-of-the-art techniques: conflict analysis and conflict-driven backjumping

vV v v v v v V¥

robust and carefully tested implementation: DUALIZA
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Conclusion and Future Work

We are on the right track

» DUALIZA is competitive on some CNF formulae and

» outperforms state-of-the-art #SAT solvers on another class of formulae.
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Conclusion and Future Work

We are on the right track

» DUALIZA is competitive on some CNF formulae and

» outperforms state-of-the-art #SAT solvers on another class of formulae.

In the near future, we plan to

incorporate dual conflict analysis with backjumping and redundant clause learning,
drop decision restrictions,

capture component reasoning and

weighted projected model counting for Bayesian reasoning,

optimize circuit representation to improve CNF encoding, and

vV v v v v V¥

explore dual preprocessing techniques.
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