
Combining Conflict-Driven Clause Learning and
Chronological Backtracking for Propositional Model Counting

Sibylle Möhle and Armin Biere

Institute for Formal Models and Verification
LIT Secure and Correct Systems Lab

5th Global Conference on Artificial Intelligence (GCAI 2019)

17-19 September 2019

Who Wants the Model Count Anyway?

2

Hardware Verification

Software Verification

Cryptography

Probabilistic Reasoning
Bayesian Networks

Product Configuration

Planning

???

3

Hardware Verification

Software Verification

Cryptography

Probabilistic Reasoning
Bayesian Networks

Product Configuration

Planning

???

3

State of the Art in Exact Propositional Model Counting (#SAT)

Counting Based on the Davis-Putnam (DP) Algorithm 1

Explore the search space in an ordered manner

Component-Based Reasoning 2,3

Decompose formula into subformulae with distinct sets of variables, solve them independently and multiply
their model counts

Parallel and distributed version available 4,5

1 E. Birnbaum, E.L. Lozinskii, “The Good Old Davis-Putnam Procedure Helps Counting Models”, JAIR, 1999.
2 R.J. Bayardo, J.D. Pehoushek, “Counting Models Using Connected Components”, AAAI’00.

3 M. Thurley, “sharpSAT – Counting Models with Advanced Component Caching and Implicit BCP”, SAT’06.
4 J. Burchard, T. Schubert, B. Becker, “Laissez-Faire Caching for Parallel #SAT Solving”, SAT’15.

5 J. Burchard, T. Schubert, B. Becker, “Distributed Parallel #SAT Solving”, CLUSTER’16.
4

Related Work

Dual Reasoning 6,7

Run one SAT solver on the formula and its negation simultaneously

If the negation of a formula evaluates to true under a variable assignment, the assignment is a model of the
formula and vice versa

Chronological Conflict-Driven Clause Learning (CDCL) 8,9

Combine chronological backtracking with CDCL

Fix of several invariants violated by chronological backtracking in combination with CDCL

6 A. Biere, S. Hölldobler, S. Möhle, “An Abstract Dual Propositional Model Counter”, YSIP’17.
7 S. Möhle, A. Biere, “Dualizing Projected Model Counting”, ICTAI’18.

8 A. Nadel, V. Ryvchin, “Chronological Backtracking”, SAT’18.
9 S. Möhle, A. Biere, “Backing Backtracking”, SAT’19.

5

Challenges in Exact Propositional Model Counting (#SAT)

6

The Search Space Needs to be Explored Exhaustively

F = (p ∨ q) ∧ (p ∨ q) M = 0

F |r = (p ∨ q) ∧ (p ∨ q) M = 0
F |rq = (p) ∧ (p) M = 0
F |rqp = ⊥ M = 0
F |rq = > M = 2
F |r = (p ∨ q) ∧ (p ∨ q) M = 2
F |rq = (p) ∧ (p) M = 2
F |rqp = ⊥ M = 2
F |rq = > M = 4

rd

qd

p

7

q

X

r

qd

p

7

q

X

V = {p,q, r}

7

The Search Space Needs to be Explored Exhaustively

F = (p ∨ q) ∧ (p ∨ q) M = 0
F |r = (p ∨ q) ∧ (p ∨ q) M = 0

F |rq = (p) ∧ (p) M = 0
F |rqp = ⊥ M = 0
F |rq = > M = 2
F |r = (p ∨ q) ∧ (p ∨ q) M = 2
F |rq = (p) ∧ (p) M = 2
F |rqp = ⊥ M = 2
F |rq = > M = 4

rd

qd

p

7

q

X

r

qd

p

7

q

X

V = {p,q, r}

7

The Search Space Needs to be Explored Exhaustively

F = (p ∨ q) ∧ (p ∨ q) M = 0
F |r = (p ∨ q) ∧ (p ∨ q) M = 0
F |rq = (p) ∧ (p) M = 0

F |rqp = ⊥ M = 0
F |rq = > M = 2
F |r = (p ∨ q) ∧ (p ∨ q) M = 2
F |rq = (p) ∧ (p) M = 2
F |rqp = ⊥ M = 2
F |rq = > M = 4

rd

qd

p

7

q

X

r

qd

p

7

q

X

V = {p,q, r}

7

The Search Space Needs to be Explored Exhaustively

F = (p ∨ q) ∧ (p ∨ q) M = 0
F |r = (p ∨ q) ∧ (p ∨ q) M = 0
F |rq = (p) ∧ (p) M = 0
F |rqp = ⊥ M = 0

F |rq = > M = 2
F |r = (p ∨ q) ∧ (p ∨ q) M = 2
F |rq = (p) ∧ (p) M = 2
F |rqp = ⊥ M = 2
F |rq = > M = 4

rd

qd

p

7

q

X

r

qd

p

7

q

X

V = {p,q, r}

7

The Search Space Needs to be Explored Exhaustively

F = (p ∨ q) ∧ (p ∨ q) M = 0
F |r = (p ∨ q) ∧ (p ∨ q) M = 0
F |rq = (p) ∧ (p) M = 0
F |rqp = ⊥ M = 0
F |rq = > M = 2

F |r = (p ∨ q) ∧ (p ∨ q) M = 2
F |rq = (p) ∧ (p) M = 2
F |rqp = ⊥ M = 2
F |rq = > M = 4

rd

qd

p

7

q

X

r

qd

p

7

q

X

V = {p,q, r}

7

The Search Space Needs to be Explored Exhaustively

F = (p ∨ q) ∧ (p ∨ q) M = 0
F |r = (p ∨ q) ∧ (p ∨ q) M = 0
F |rq = (p) ∧ (p) M = 0
F |rqp = ⊥ M = 0
F |rq = > M = 2
F |r = (p ∨ q) ∧ (p ∨ q) M = 2

F |rq = (p) ∧ (p) M = 2
F |rqp = ⊥ M = 2
F |rq = > M = 4

rd

qd

p

7

q

X

r

qd

p

7

q

X

V = {p,q, r}

7

The Search Space Needs to be Explored Exhaustively

F = (p ∨ q) ∧ (p ∨ q) M = 0
F |r = (p ∨ q) ∧ (p ∨ q) M = 0
F |rq = (p) ∧ (p) M = 0
F |rqp = ⊥ M = 0
F |rq = > M = 2
F |r = (p ∨ q) ∧ (p ∨ q) M = 2
F |rq = (p) ∧ (p) M = 2

F |rqp = ⊥ M = 2
F |rq = > M = 4

rd

qd

p

7

q

X

r

qd

p

7

q

X

V = {p,q, r}

7

The Search Space Needs to be Explored Exhaustively

F = (p ∨ q) ∧ (p ∨ q) M = 0
F |r = (p ∨ q) ∧ (p ∨ q) M = 0
F |rq = (p) ∧ (p) M = 0
F |rqp = ⊥ M = 0
F |rq = > M = 2
F |r = (p ∨ q) ∧ (p ∨ q) M = 2
F |rq = (p) ∧ (p) M = 2
F |rqp = ⊥ M = 2

F |rq = > M = 4

rd

qd

p

7

q

X

r

qd

p

7

q

X

V = {p,q, r}

7

The Search Space Needs to be Explored Exhaustively

F = (p ∨ q) ∧ (p ∨ q) M = 0
F |r = (p ∨ q) ∧ (p ∨ q) M = 0
F |rq = (p) ∧ (p) M = 0
F |rqp = ⊥ M = 0
F |rq = > M = 2
F |r = (p ∨ q) ∧ (p ∨ q) M = 2
F |rq = (p) ∧ (p) M = 2
F |rqp = ⊥ M = 2
F |rq = > M = 4

rd

qd

p

7

q

X

r

qd

p

7

q

X

V = {p,q, r}

7

Chronological Backtracking Without Conflict-Driven Clause Learning (CDCL)

a bd c d ed f id jgd h
7

a bd c d ed f gd h i

Suitability for #SAT
+ Search space is traversed in an ordered manner

+ The correct model count is returned

– Regions of the search space with no solution can not be escaped easily

– Inefficient in terms of execution time

8

Chronological Backtracking Without Conflict-Driven Clause Learning (CDCL)

a bd c d ed f id jgd h
7

a bd c d ed f gd h i

Suitability for #SAT
+ Search space is traversed in an ordered manner

+ The correct model count is returned

– Regions of the search space with no solution can not be escaped easily

– Inefficient in terms of execution time

8

Chronological Backtracking Without Conflict-Driven Clause Learning (CDCL)

a bd c d ed f id jgd h
7

a bd c d ed f gd h i

Suitability for #SAT
+ Search space is traversed in an ordered manner

+ The correct model count is returned

– Regions of the search space with no solution can not be escaped easily

– Inefficient in terms of execution time

8

Chronological Backtracking Without Conflict-Driven Clause Learning (CDCL)

a bd c d ed f id jgd h
7

a bd c d ed f gd h i

Suitability for #SAT
+ Search space is traversed in an ordered manner

+ The correct model count is returned

– Regions of the search space with no solution can not be escaped easily

– Inefficient in terms of execution time

8

Non-Chronological Backtracking with Conflict-Driven Clause Learning (CDCL)

a bd c d ed f id jgd h
X

a bd c d ed f gd h i kd

7

7

Suitability for #SAT
+ Enables the solver to escape regions of the search space with no solution

+ Gain in performance (for SAT)

– Might result in an wrong model count

– Might lead to redundant work

9

Non-Chronological Backtracking with Conflict-Driven Clause Learning (CDCL)

a bd c d ed f id jgd h
X

a bd c d ed f gd h i

kd

7

7

Suitability for #SAT
+ Enables the solver to escape regions of the search space with no solution

+ Gain in performance (for SAT)

– Might result in an wrong model count

– Might lead to redundant work

9

Non-Chronological Backtracking with Conflict-Driven Clause Learning (CDCL)

a bd c d ed f id jgd h
X

a bd c d ed f gd h i kd

7

7

Suitability for #SAT
+ Enables the solver to escape regions of the search space with no solution

+ Gain in performance (for SAT)

– Might result in an wrong model count

– Might lead to redundant work

9

Non-Chronological Backtracking with Conflict-Driven Clause Learning (CDCL)

a bd c d ed f id jgd h
X

a bd c d ed f gd h i kd

7

7

Suitability for #SAT
+ Enables the solver to escape regions of the search space with no solution

+ Gain in performance (for SAT)

– Might result in an wrong model count

– Might lead to redundant work

9

Non-Chronological Backtracking with Conflict-Driven Clause Learning (CDCL)

a bd c d ed f id jgd h
X

a bd c d ed f gd h i kd

7

7

Suitability for #SAT
+ Enables the solver to escape regions of the search space with no solution

+ Gain in performance (for SAT)

– Might result in an wrong model count

– Might lead to redundant work

9

Chronological Backtracking with Conflict-Driven Clause Learning (CDCL)

Suitability for #SAT
+ Enables the solver to escape regions of the search space with no solution

+ Returns the correct model count

+ Avoids (at least some) redundant work

+ Does not significantly degrade solver performance for SAT

10

Counting via Enumeration with Chronological CDCL

11

The Main Idea

Rules
F = (p ∨ q) ∧ (p ∨ q)

V = {p,q, r}

M = (r ∧ q) ∨ (r ∧ p ∧ q) ∨ (r ∧ p ∧ q) = C1 ∨ C2 ∨ C3

M ≡ F and #M =
3∑

i=1
2|V−Ci | = 4 = #F

Generalizing, #F =
∑

C∈M 2|V−C| and

M is a Disjoint-Sum-of-Products (DSOP) representation of F

M is a disjunction of conjunctions of literals (cubes)

The cubes in M are pairwise contradicting

M is logically equivalent to F

M is not unique
12

The Main Idea

Assignment Trail I

I = abcddefghd ij a b c dd e f g hd i j

Pending Search Space O(I)

O(I) = abcd ∨ abcdefgh ∨ I a b c dd

d

e f g hd

h

i j

O(I) is a DSOP

Pending Models of F F ∧O(I)

Models of F found M
13

The Main Idea

During execution, we have that

O(I) ∧ F ∨M ≡ F and #F = #(F ∧O(I)) +
∑

C∈M 2|V−C|

Upon termination, we have O(I) = ⊥, hence

M ≡ F and #F =
∑

C∈M 2|V−C|

14

Example

F = (p ∨ q) ∧ (p ∨ q) V = {p,q, r}

Step Rule I F |I M

0 ε (p ∨ q) ∧ (p ∨ q) ⊥
1 Decide rd (p ∨ q) ∧ (p ∨ q) ⊥
2 Decide rdqd > ⊥
3 BackTrue rdq (p) ∧ (p) rq
4 Unit rdqp ⊥ rq
5 BackFalse r (p ∨ q) ∧ (p ∨ q) rq
6 Decide rpd (q) rq
7 Unit rpdq > rq
8 BackTrue rp (q) rq ∨ rpq
9 Unit rpq > rq ∨ rpq
10 EndTrue rq ∨ rpq ∨ rpq

15

Calculus

EndTrue: (F , I, M, δ) ;EndTrue M ∨ I if F |I = > and decs(I) = ∅

EndFalse: (F , I, M, δ) ;EndFalse M if exists C ∈ F and C|I = ⊥ and δ(C) = 0

Unit: (F , I, M, δ) ;Unit (F , I`, M, δ[` 7→ a]) if F |I 6= > and ⊥ 6∈ F |I and
exists C ∈ F with {`} = C|I and a = δ(C \ {`})

BackTrue: (F , I, M, δ) ;BackTrue (F , PK `, M ∨ I, δ[L 7→ ∞][` 7→ e]) if F |I = > and
PQ = I and D = decs(I) and e + 1 = δ(D) = δ(I) and ` ∈ D and
e = δ(D \ {`}) = δ(P) and K = Q6e and L = Q>e

BackFalse: (F , I, M, δ) ;BackFalse (F , PK `, M, δ[L 7→ ∞][` 7→ j]) if exists C ∈ F and
exists D with PQ = I and C|I = ⊥ and c = δ(C) = δ(D) > 0 such that
` ∈ D and ¯̀∈ decs(I) and `|Q = ⊥ and F ∧M |= D and
j = δ(D \ {`}) and b = δ(P) = c − 1 and K = Q6b and L = Q>b

Decide: (F , I, M, δ) ;Decide (F , I`d , M, δ[` 7→ d]) if F |I 6= > and ⊥ 6∈ F |I and
units(F |I) = ∅ and V (`) ∈ V and δ(`) =∞ and d = δ(I) + 1

16

Conclusion

Our Contribution

Combined chronological backtracking with CDCL for propositional model counting

Formal calculus for propositional model counting based on these ideas
enumeration approach
no blocking clauses
escape search space regions with no solution

Formal proof of correctness

Further Research

Implement our rules to experimentally validate their effectiveness

Investigate possible applications in SMT and QBF

Extend our approach to projected model counting in combination with dual reasoning

Target component-based reasoning
17

