From Propositional Model Counting to SAT Solving and Back

Sibylle Möhle-Rotondi

Institute for Formal Models and Verification LIT Secure and Correct Systems Lab

Who Wants the Model Count Anyway?

Cryptography

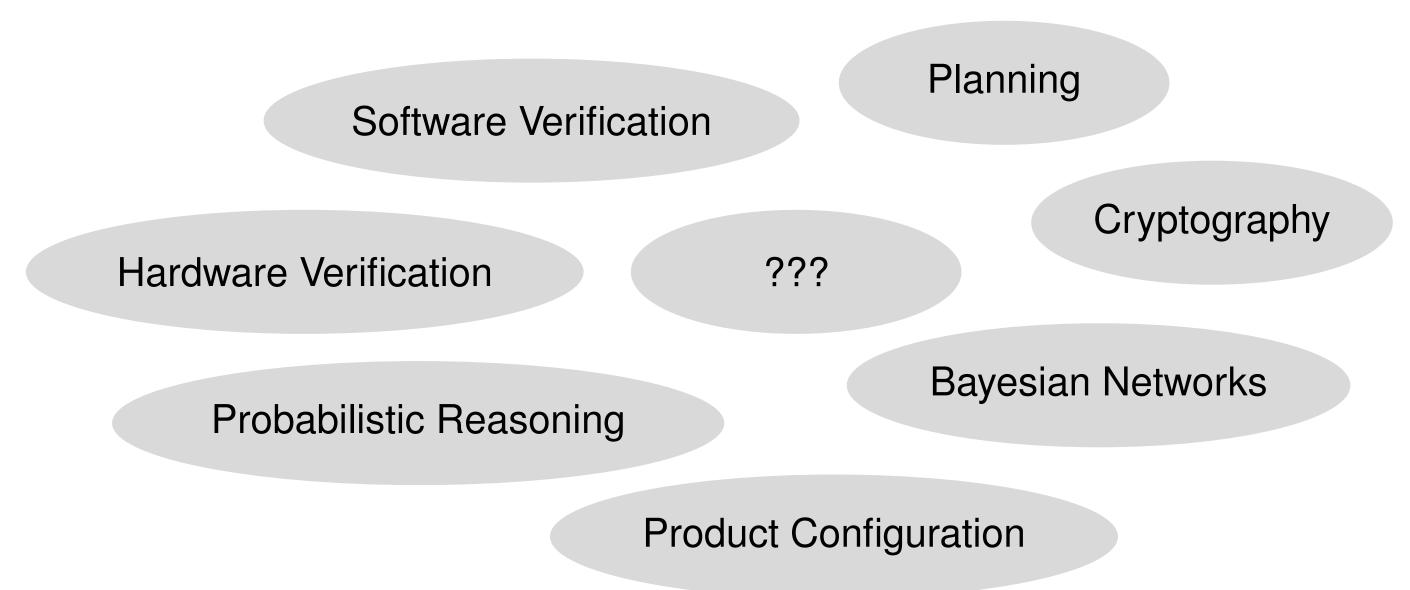
Hardware Verification

Bayesian Networks

Probabilistic Reasoning

Software Verification

Product Configuration



State of the Art in Exact Propositional Model Counting (#SAT)

Counting Based on the Davis-Putnam (DP) Algorithm¹

Explore the search space in an ordered manner

Component-Based Reasoning ^{2,3}

- Decompose formula into subformulae with distinct sets of variables, solve them independently and multiply their model counts
- Parallel and distributed version available ^{4,5}

¹ E. Birnbaum, E.L. Lozinskii, "The Good Old Davis-Putnam Procedure Helps Counting Models", JAIR, 1999.
 ² R.J. Bayardo, J.D. Pehoushek, "Counting Models Using Connected Components", AAAI'00.
 ³ M. Thurley, "sharpSAT – Counting Models with Advanced Component Caching and Implicit BCP", SAT'06.
 ⁴ J. Burchard, T. Schubert, B. Becker, "Laissez-Faire Caching for Parallel #SAT Solving", SAT'15.
 ⁵ J. Burchard, T. Schubert, B. Becker, "Distributed Parallel #SAT Solving", CLUSTER'16.

Related Work

GCAI'19.

Dual Reasoning ^{6,7}

- Run one SAT solver on the formula and its negation simultaneously
- If the negation of a formula evaluates to true under a variable assignment, the assignment is a model of the formula and vice versa

Chronological Conflict-Driven Clause Learning (CDCL) 8,9

- Combine chronological backtracking with CDCL
- Fix of several invariants violated by chronological backtracking in combination with CDCL

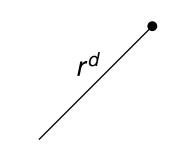
Chronological Conflict-Driven Clause Learning (CDCL) for Model Counting¹⁰

Without the use of blocking clauses

⁶ A. Biere, S. Hölldobler, S. Möhle, "An Abstract Dual Propositional Model Counter", YSIP'17.
 ⁷ S. Möhle, A. Biere, "Dualizing Projected Model Counting", ICTAI'18.
 ⁸ A. Nadel, V. Ryvchin, "Chronological Backtracking", SAT'18.
 ⁹ S. Möhle, A. Biere, "Backing Backtracking", SAT'19.
 ¹⁰ S. Möhle, A. Biere, "Combining Conflict-Driven Clause Learning and Chronological Backtracking for Propositional Model Counting", CONVIDENT.

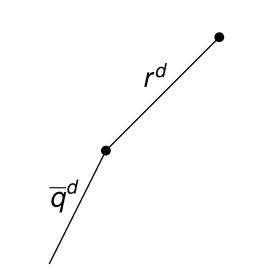
Challenges in Exact Propositional Model Counting (#SAT) (1)

$$F = (\overline{p} \lor q) \land (p \lor q)$$
 $M = 0$ \bullet $V = \{p, q, r\}$



$$V = \{p, q, r\}$$

$$egin{aligned} F &= (\overline{p} ee q) \land (p ee q) & M = 0 \ F|_r &= (\overline{p} ee q) \land (p ee q) & M = 0 \ F|_{r\overline{q}} &= (\overline{p}) \land (p) & M = 0 \end{aligned}$$



$$V = \{p, q, r\}$$

$$F = (\overline{p} \lor q) \land (p \lor q) \qquad M = 0$$

$$F|_{r} = (\overline{p} \lor q) \land (p \lor q) \qquad M = 0$$

$$F|_{r\overline{q}} = (\overline{p}) \land (p) \qquad M = 0$$

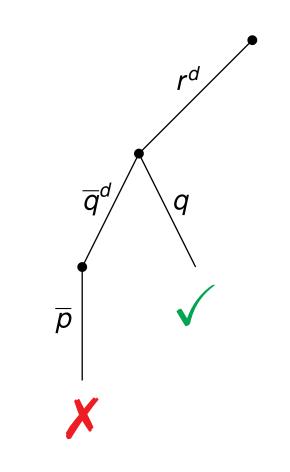
$$F|_{r\overline{q}\overline{p}} = \bot \qquad M = 0$$

$$\overline{q}^{d}$$

7

 $V = \{p, q, r\}$

$$F = (\overline{p} \lor q) \land (p \lor q)$$
 $M = 0$ $F|_r = (\overline{p} \lor q) \land (p \lor q)$ $M = 0$ $F|_{r\overline{q}} = (\overline{p}) \land (p)$ $M = 0$ $F|_{r\overline{qp}} = \bot$ $M = 0$ $F|_{rqp} = \bot$ $M = 0$ $F|_{rq} = \top$ $M = 0$



 $V = \{p, q, r\}$

$$F = (\overline{p} \lor q) \land (p \lor q) \qquad M = 0$$

$$F|_{r} = (\overline{p} \lor q) \land (p \lor q) \qquad M = 0$$

$$F|_{r\overline{q}} = (\overline{p}) \land (p) \qquad M = 0$$

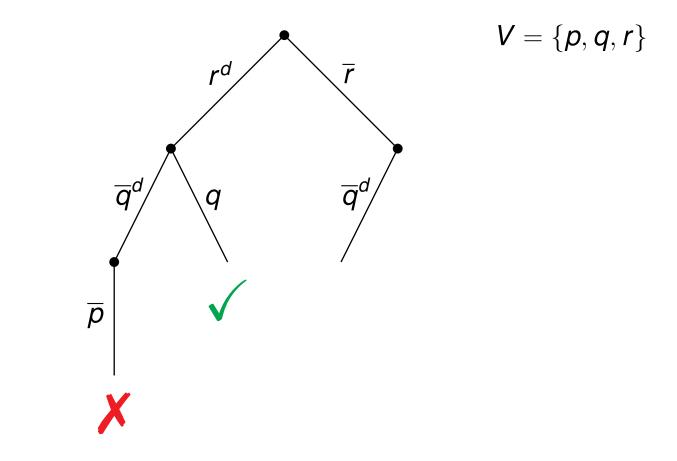
$$F|_{r\overline{q}} = \bot \qquad M = 0$$

$$F|_{rq} = \top \qquad M = 2$$

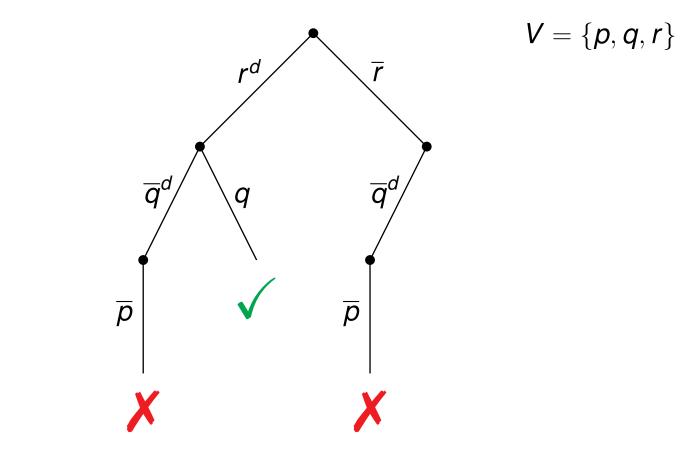
$$F|_{\overline{r}} = (\overline{p} \lor q) \land (p \lor q) \qquad M = 2$$

$$\overline{p}$$

$$\begin{array}{ll} F &= (\overline{p} \lor q) \land (p \lor q) & M = 0 \\ F|_r &= (\overline{p} \lor q) \land (p \lor q) & M = 0 \\ F|_{r\overline{q}} &= (\overline{p}) \land (p) & M = 0 \\ F|_{r\overline{q}\overline{p}} = \bot & M = 0 \\ F|_{rq} &= \top & M = 0 \\ F|_{rq} &= \overline{1} & M = 0 \\ F|_{r\overline{q}} &= (\overline{p} \lor q) \land (p \lor q) & M = 2 \\ F|_{\overline{rq}} &= (\overline{p}) \land (p) & M = 2 \\ \end{array}$$



$$\begin{array}{ll} F &= (\overline{p} \lor q) \land (p \lor q) & M = 0 \\ F|_r &= (\overline{p} \lor q) \land (p \lor q) & M = 0 \\ F|_{r\overline{q}} &= (\overline{p}) \land (p) & M = 0 \\ F|_{r\overline{q}\overline{p}} = \bot & M = 0 \\ F|_{rq} &= \top & M = 0 \\ F|_{rq} &= (\overline{p} \lor q) \land (p \lor q) & M = 2 \\ F|_{\overline{r}\overline{q}} &= (\overline{p}) \land (p) & M = 2 \\ F|_{\overline{rq}\overline{p}} = \bot & M = 2 \\ F|_{\overline{rqp}} = \bot & M = 2 \end{array}$$



$$F = (\overline{p} \lor q) \land (p \lor q) \qquad M = 0$$

$$F|_{r} = (\overline{p} \lor q) \land (p \lor q) \qquad M = 0$$

$$F|_{r\overline{q}} = (\overline{p}) \land (p) \qquad M = 0$$

$$F|_{r\overline{q}\overline{p}} = \bot \qquad M = 0$$

$$F|_{rq} = \top \qquad M = 2$$

$$F|_{\overline{rq}} = (\overline{p} \lor q) \land (p \lor q) \qquad M = 2$$

$$F|_{\overline{rq}} = (\overline{p}) \land (p) \qquad M = 2$$

$$F|_{\overline{rq}} = (\overline{p}) \land (p) \qquad M = 2$$

$$F|_{\overline{rq}} = \overline{p} \land (m = 4)$$

$$\overline{p} \qquad \overline{p} \qquad$$

And CDCL is biased towards conflicts!

Dualizing Projected Model Counting (ICTAI'18)

Projected Model Counting

F(X, Y) (arbitrary) propositional formula over variables X and Y with $X \cap Y = \emptyset$

- *X* relevant input variables
- *Y irrelevant* input variables

We are interested in the number of models projected onto X:

 $\#\exists Y.F(X, Y)$

Projected Model Counting

F(X, Y) (arbitrary) propositional formula over variables X and Y with $X \cap Y = \emptyset$

- *X* relevant input variables
- *Y irrelevant* input variables

We are interested in the number of models projected onto X:

 $\#\exists Y.F(X, Y)$

Example $F(X, Y) = x \lor y$

$$\mathcal{M}(\exists Y.F(X, Y)) = \{x, \neg x\}$$

 $\mathcal{M}(\exists Y.F(X, Y)) = \{xy, x \neg y, \neg xy\}$

$\#\exists Y.F(X, Y) = 2$ $\#\exists Y.F(X, Y) = 3 = \#F(X, Y)$

Our Dual Approach Facilitates the Detection of Partial Models

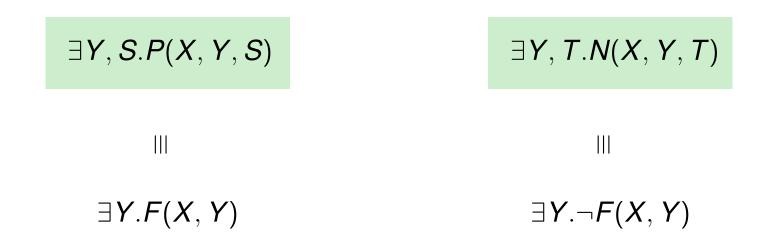
```
$ cat clause.form
p | q | r | s
$ dualiza -e -r p,r,s clause.form
ALL SATISFYING ASSIGNMENTS
s
r !s
!r !s
$ dualiza -r p,r,s clause.form
NUMBER SATISFYING ASSIGNMENTS
8
```

```
$ dualiza -r p,r,s clause.form -1 | grep RULE
c LOG 1 RULE UNX 1 -4
c LOG 1 RULE UNX 2 -4
c LOG 1 RULE BNOF 1 -4
c LOG 2 RULE UNX 3 -3
c LOG 2 RULE BNOF 2 -3
c LOG 3 RULE UNY 1 -2
c LOG 3 RULE ENO 1
```

Dual Representation of F(X, Y)

Dual Representation of F(X, Y)

The General Case — Duality with Projection onto Relevant Input Variables



A First Example

 $F(X, Y) = (p \lor q \lor r \lor s)$ $X = \{p, r, s\}$ $Y = \{q\}$ $P(X, Y, S) = (p \lor q \lor r \lor s)$ $S = \emptyset$ $N(X, Y, T) = (\neg p) \land (\neg q) \land (\neg r) \land (\neg s)$ $T = \emptyset$

A First Example

$$F(X, Y) = (p \lor q \lor r \lor s)$$
 $X = \{p, r, s\}$ $Y = \{q\}$ $P(X, Y, S) = (p \lor q \lor r \lor s)$ $S = \emptyset$ $N(X, Y, T) = (\neg p) \land (\neg q) \land (\neg r) \land (\neg s)$ $T = \emptyset$

Step	Rule	1	$P _I$	$N _I$	М	Found
0		()	$(p \lor q \lor r \lor s)$	$(\neg p) \land (\neg q) \land (\neg r) \land (\neg s)$	0	
1	UNXY	S	Ø	$(\neg p) \land (\neg q) \land (\neg r) \land ()$	0	
2	BN0F	eg S	$(p \lor q \lor r)$	$(\neg ho) \wedge (\neg q) \wedge (\neg r)$	4	S
3	UNXY	eg Sr	Ø	$(\neg ho) \wedge (\neg q) \wedge ()$	4	
4	BN0F	$\neg S \neg r$	$(p \lor q)$	$(\neg ho) \wedge (\neg q)$	6	¬ <i>sr</i>
5	UNXY	$\neg s \neg rq$	Ø	$(\neg p) \land ()$	6	
6	EN0	$\neg s \neg rq$	Ø	$(\neg p) \land ()$	8	<i>¬S¬r</i>

Can We Compete with State-of-the-Art #SAT Solvers?

 $cat clause_n.form$ (x1 | x2 | ... | xn)

Can We Compete with State-of-the-Art #SAT Solvers?

\$ cat clause_n.form
(x1 | x2 | ... | xn)

n	Mode	sharpSAT [s]	DUALIZA [S]	
	dual	$< 1 \cdot 10^{-2}$	$< 1 \cdot 10^{-2}$	
10	block	$< 1 \cdot 10^{-2}$	2 · 10 ⁻²	
	flip	$< 1 \cdot 10^{-2}$	$< 1 \cdot 10^{-2}$	
20	block	1 · 10 ⁻²	$9\cdot 10^{-1}$	
20	flip	1 · 10 ⁻²	$2 \cdot 10^{-1}$	
30	block	1 · 10 ^{−2}	$4\cdot 10^4$	
00	flip	1 · 10 ⁻²	$2 \cdot 10^2$	
100	dual	$< 1 \cdot 10^{-2}$	$< 1 \cdot 10^{-2}$	
1000	dual	8 · 10 ^{−2}	$2 \cdot 10^{-2}$	
10000	dual	$1 \cdot 10^1$	$2 \cdot 10^{-1}$	

Where Our Dual Approach Really Wins

\$ cat nrp4.form (x1 | x2 | x3 | x4) | (x5 = x2 ^ x3 ^ x4) | (x6 = x1 ^ x3 ^ x4) | (x7 = x1 ^ x2 ^ x4) | (x8 = x1 ^ x2 ^ x3)

Where Our Dual Approach Really Wins

\$ cat		nrp4.form						
(x	:1		x2		xЗ		x4)	
(x	5	=	x2	^	xЗ	^	x4)	
(x	6	=	x1	^	xЗ	^	x4)	
(x	7	=	x1	^	x2	^	x4)	
(x	8	=	x1	^	x2	^	x3)	

n	Method	sharpSAT [s]	DUALIZA [S]
10	dual	9 · 10 ^{−2}	$< 1 \cdot 10^{-2}$
20	dual	$7\cdot 10^2$	1 · 10 ⁻²
21	dual	$2 \cdot 10^3$	1 · 10 ⁻²
22	dual	*	1 · 10 ⁻²
100	dual	*	8 · 10 ⁻²
1000	dual	*	$1 \cdot 10^1$
5000	dual	*	$2\cdot 10^2$

Calculus

EP0: $(P, N, I, M) \rightsquigarrow_{\text{EP0}} M$ if $\emptyset \in P|_I$ and decs $(I) = \emptyset$

EP1: $(P, N, I, M) \rightsquigarrow_{\text{EP1}} M + 2^{|X-I|}$ if $P|_I = \emptyset$ and $V(\text{decs}(I)) \cap X = \emptyset$

ENO: $(P, N, I, M) \sim_{\mathsf{ENO}} M + 2^{|X-I|}$ if $\emptyset \in N|_I$ and $V(\operatorname{decs}(I)) \cap X = \emptyset$

 $\begin{array}{ll} \mathsf{BP0F:} \left(P, N, I\ell^{d}I', M\right) \rightsquigarrow_{\mathsf{BP0F}} \left(P, N, I\bar{\ell}^{f(m')}, M\right) & \text{if } \emptyset \in P|_{I\ell I'} \text{ and } V(\operatorname{decs}(I')) = \emptyset \text{ and } \\ m' = \sum \left\{m \mid \ell^{f(m)} \in I'\right\} \end{array}$

JP0: $(P, N, II', M) \sim_{JP0} (P \land C^r, N, I\ell', M - m')$ if $\emptyset \in P|_{II'}$ and $P \models C$ and $C|_I = \{\ell'\}$ and $m' = \sum \{m \mid \ell^{f(m)} \in I'\}$

 $\begin{array}{ll} \mathsf{BP1F:}\left(P,N,\mathit{I}\ell^{d}\mathit{I}',M\right) \rightsquigarrow_{\mathsf{BP1F}} (P,N,\mathit{I}\bar{\ell}^{\mathit{f}(m'+m'')},M+m'') & \text{if } P|_{\mathit{I}\ell\mathit{I}'} = \emptyset \text{ and } V(\ell) \in X \text{ and} \\ V(\operatorname{decs}(\mathit{I}')) \cap X = \emptyset \text{ and } m' = \sum \{m \mid \ell^{\mathit{f}(m)} \in \mathit{I}'\} \text{ and } m'' = 2^{|X-\mathit{I}\ell\mathit{I}'|} \end{array}$

 $\begin{array}{l} \mathsf{BP1L:} \ (P,N,\mathit{I\ell^dI'},M) \rightsquigarrow_{\mathsf{BP1L}} (P \land D,N,\mathit{I\bar{\ell}},M+m'') \quad \text{if} \quad P|_{\mathit{I\ell I'}} = \emptyset \ \text{and} \ \mathit{V}(\ell) \in X \ \text{and} \\ V(\mathsf{decs}(\mathit{I'})) \cap X = \emptyset \ \text{and} \ m'' = 2^{|X-\mathit{I\ell I'}|} \ \text{and} \ D = \pi(\neg\mathsf{decs}(\mathit{I\ell}),X) \end{array}$

Calculus

- BNOF: $(P, N, I\ell^d I', M) \rightsquigarrow_{BNOF} (P, N, I\bar{\ell}^{f(m'+m'')}, M+m'')$ if $\emptyset \in N|_{I\ell I'}$ and $V(\ell) \in X$ and $V(decs(I')) \cap X = \emptyset$ and $m' = \sum \{m \mid \ell^{f(m)} \in I'\}$ and $m'' = 2^{|X-I\ell I'|}$
- BN0L: $(P, N, I\ell^d I', M) \rightsquigarrow_{BN0L} (P \land D, N, I\bar{\ell}, M + m'')$ if $\emptyset \in N|_{I\ell I'}$ and $V(\ell) \in X$ and $V(\operatorname{decs}(I')) \cap X = \emptyset$ and $m'' = 2^{|X I\ell I'|}$ and $D = \pi(\neg \operatorname{decs}(I\ell), X)$
- DX: $(P, N, I, M) \sim_{DX} (P, N, I\ell^d, M)$ if $\emptyset \notin (P \land N)|_I$ and $units((P \land N)|_I) = \emptyset$ and $V(\ell) \in X I$
- DYS: $(P, N, I, M) \rightsquigarrow_{\text{DYS}} (P, N, I\ell^d, M)$ if $\emptyset \notin (P \land N)|_I$ and $\text{units}((P \land N)|_I) = \emptyset$ and $V(\ell) \in (Y \cup S) I$ and $X I = \emptyset$

UP: $(P, N, I, M) \rightsquigarrow_{UP} (P, N, I\ell, M)$ if $\{\ell\} \in P|_I$

UNXY: $(P, N, I, M) \sim_{\text{UNXY}} (P, N, I\bar{\ell}^d, M)$ if $\{\ell\} \in N|_I$ and $V(\ell) \in X \cup Y$ and $\emptyset \notin P|_I$ and units $(P|_I) = \emptyset$

UNT: $(P, N, I, M) \rightsquigarrow_{UNT} (P, N, I\ell, M)$ if $\{\ell\} \in N|_I$ and $V(\ell) \in T$ and $\emptyset \notin P|_I$ and units $(P|_I) = \emptyset$

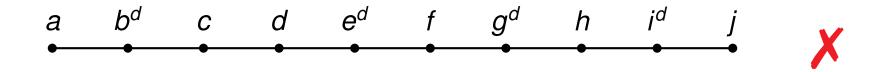
 $\mathsf{FP:} \quad (P \land C^r, N, I, M) \rightsquigarrow_{\mathsf{FP}} (P, N, I, M) \quad \text{if} \quad \emptyset \not\in P|_I$

Our Contribution — the First Dual Calculus for Exact Projected Model Counting

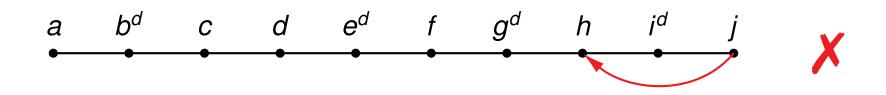
- dual representation of the formula enabling the detection of partial models and subsequent pruning of the search space
- good learning mechanism exempt from satisfiability checks and clause watching mechanisms
- significant performance gain compared to non-dual variant
- accepts arbitrary formulae and circuits as argument
- novel techniques for preventing multiple model counts: *flipping* and *discounting*
- models state-of-the-art techniques: conflict analysis and conflict-driven backjumping
- robust and carefully tested implementation: DUALIZA
 - competitive on some CNF formulae
 - outperforms state-of-the-art #SAT solvers on another class of formulae

Challenges in Exact Propositional Model Counting (#SAT) (2)

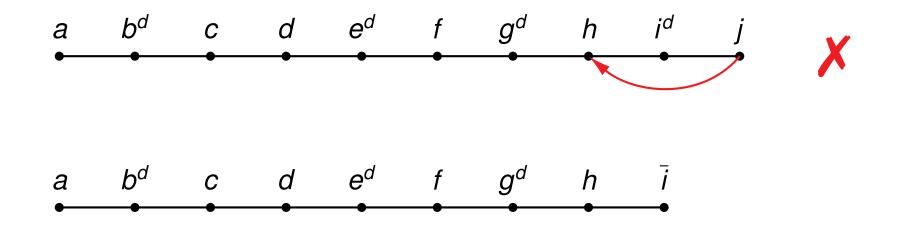
Chronological Backtracking Without Conflict-Driven Clause Learning (CDCL)

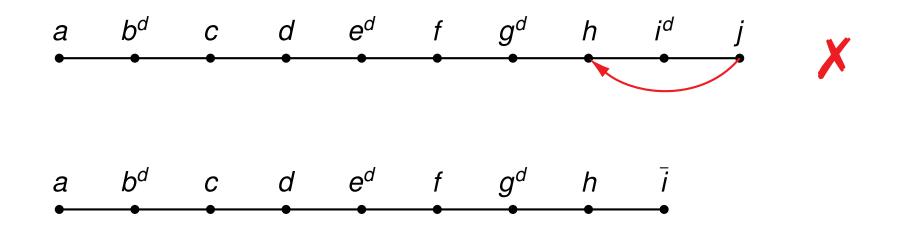


Chronological Backtracking Without Conflict-Driven Clause Learning (CDCL)



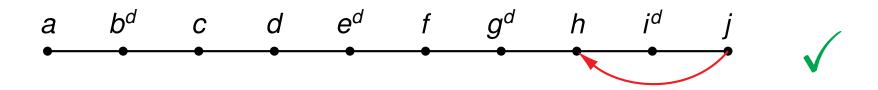
Chronological Backtracking Without Conflict-Driven Clause Learning (CDCL)

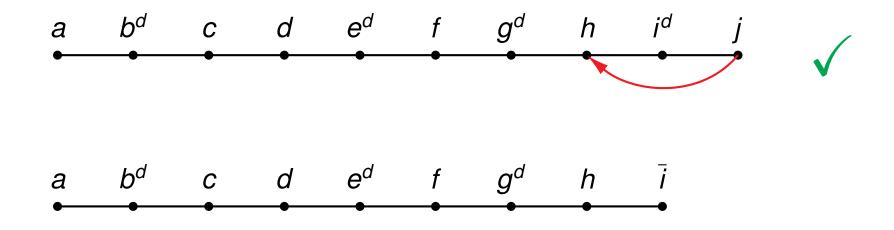


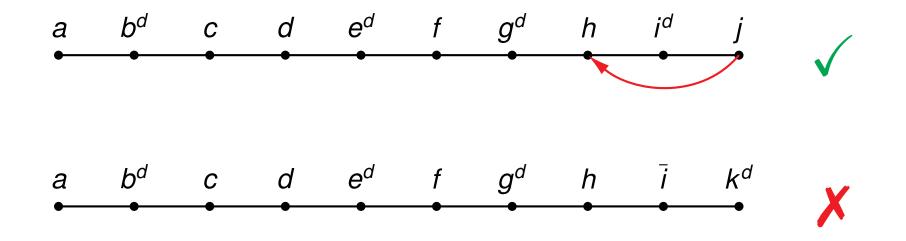


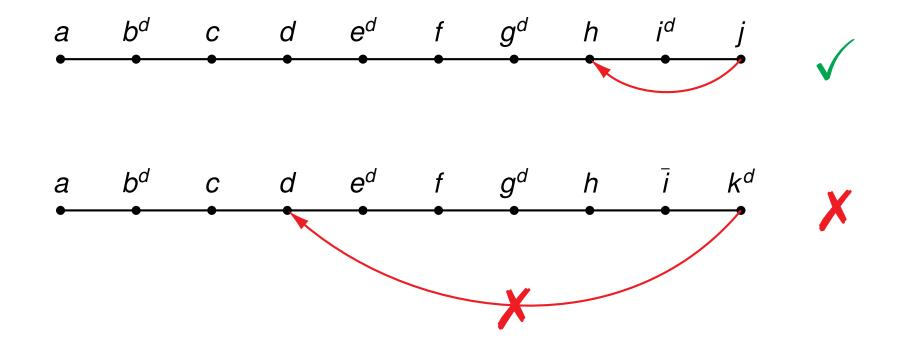
Suitability for #SAT

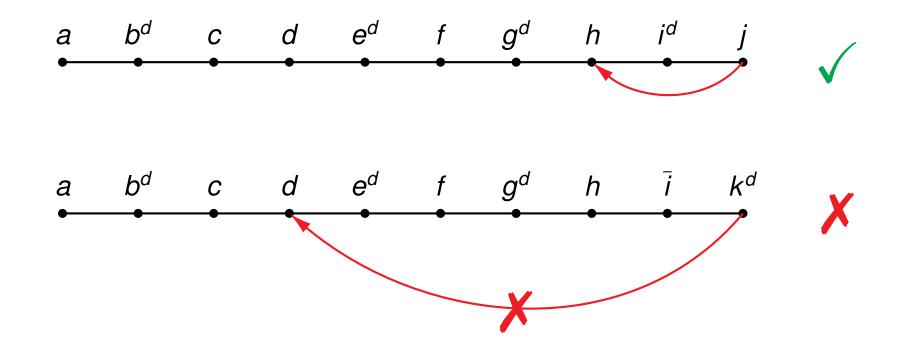
- + Search space is traversed in an ordered manner
- + The correct model count is returned
- Regions of the search space with no solution can not be escaped easily
- Inefficient in terms of execution time











Suitability for #SAT

- + Enables the solver to escape regions of the search space with no solution
- + Gain in performance (for SAT)
- Might result in a wrong model count
- Might lead to redundant work

Suitability for #SAT

- + Enables the solver to escape regions of the search space with no solution
- + Returns the correct model count
- + Avoids (at least some) redundant work
- + Does not significantly degrade solver performance for SAT

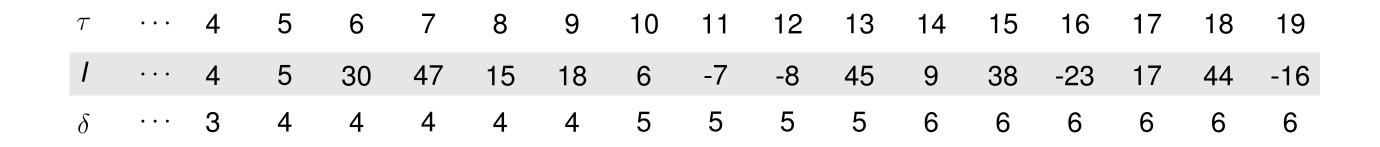
Backing Backtracking (SAT'19)

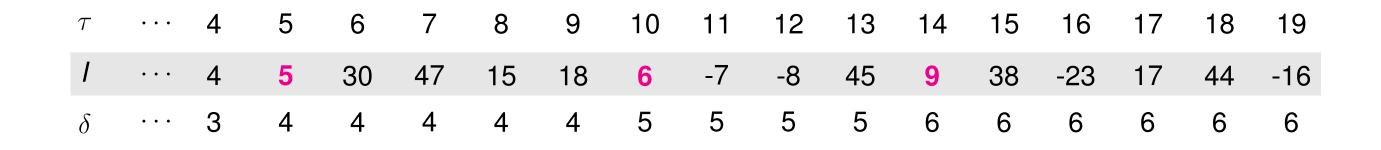
CDCL Invariants

Trail:	The assignment trail contains neither complementary pairs of literals nor duplicates.
ConflictLower:	The assignment trail preceding the current decision level does not falsify the formula.
Propagation:	On every decision level preceding the current decision level all unit clauses are propagated until completion.
LevelOrder:	The literals are ordered on the assignment trail in ascending order with respect to their decision level.
ConflictingClause:	At decision levels greater than zero the conflicting clause contains at least two literals with the current decision level.

CDCL Invariants

Trail:	The assignment trail contains neither complementary pairs of literals nor duplicates.
ConflictLower:	The assignment trail preceding the current decision level does not falsify the formula.
Propagation:	On every decision level preceding the current decision level all unit clauses are propagated until completion.
LevelOrder:	The literals are ordered on the assignment trail in ascending order with respect to their decision level.
ConflictingClause:	At decision levels greater than zero the conflicting clause contains at least two literals with the current decision level.

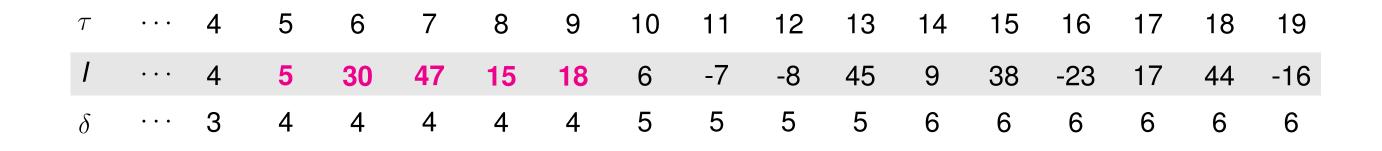




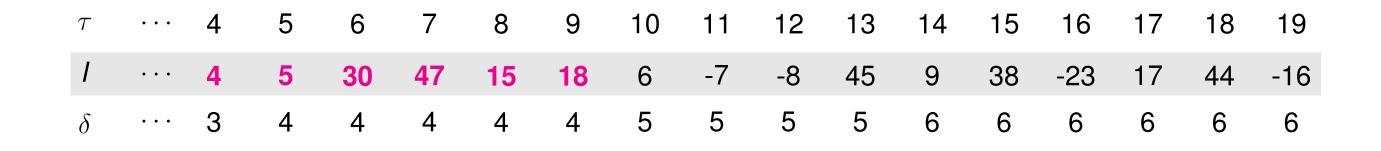
decision literal

au	•••	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	•••	4	5	30	47	15	18	6	-7	-8	45	9	38	-23	17	44	-16
δ	• • •	3	4	4	4	4	4	5	5	5	5	6	6	6	6	6	6

block(I, 4)



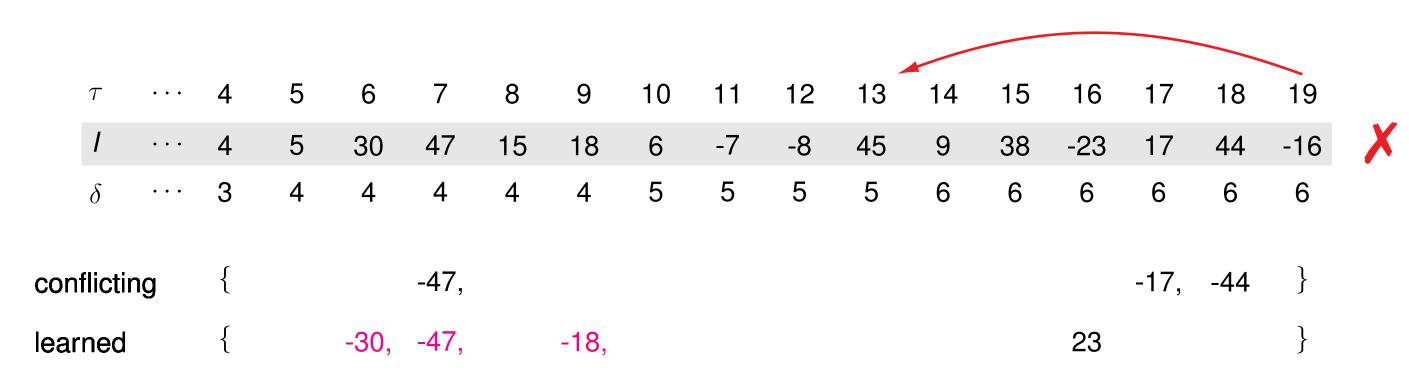
slice(I, 4)



*I*_{≤4}

	au	•••	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
	1	•••	4	5	30	47	15	18	6	-7	-8	45	9	38	-23	17	44	-16	X
	δ	• • •	3	4	4	4	4	4	5	5	5	5	6	6	6	6	6	6	
con	flictir	ng	{			-47,										-17,	-44	}	
lear	rned		{		-30,	-47,		-18,							23			}	

jump level 4



backtrack level 5

au	•••	4	5	6	7	8	9	10	11	12	13
1	•••	4	5	30	47	15	18	6	-7	-8	45
δ	•••	3	4	4	4	4	4	5	5	5	5

au	•••	4	5	6	7	8	9	10	11	12	13	
1	•••	4	5	30	47	15	18	6	-7	-8	45	
δ	• • •	3	4	4	4	4	4	5	5	5	5	
au	•••	4	5	6	7	8	9	10	11	12	13	14
1	•••	4	5	30	47	15	18	6	-7	-8	45	23
δ	• • •	3	4	4	4	4	4	5	5	5	5	4

out of order

au	•••	4	5	6	7	8	9	10	11	12	13	
1	•••	4	5	30	47	15	18	6	-7	-8	45	
δ	• • •	3	4	4	4	4	4	5	5	5	5	
				6								
1	•••	4	5	30	47	15	18	6	-7	-8	45	23
δ	• • •	3	4	4	4	4	4	5	5	5	5	4

block(*I*, 4)

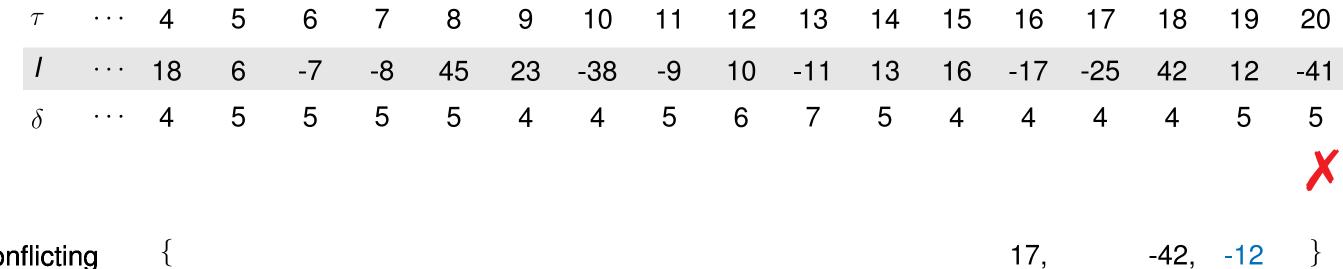
au	•••	4	5	6	7	8	9	10	11	12	13	
1	•••	4	5	30	47	15	18	6	-7	-8	45	
δ	• • •	3	4	4	4	4	4	5	5	5	5	
au	•••	4	5	6	7	8	9	10	11	12	13	14
1	•••	4	5	30	47	15	18	6	-7	-8	45	23
δ	•••	3	4	4	4	4	4	5	5	5	5	4

slice(*I*, 4)

au	•••	4	5	6	7	8	9	10	11	12	13	
1	•••	4	5	30	47	15	18	6	-7	-8	45	
δ	• • •	3	4	4	4	4	4	5	5	5	5	
au	•••	4	5	6	7	8	9	10	11	12	13	14
1	•••	4	5	30	47	15	18	6	-7	-8	45	23
δ	•••	3	4	4	4	4	4	5	5	5	5	4

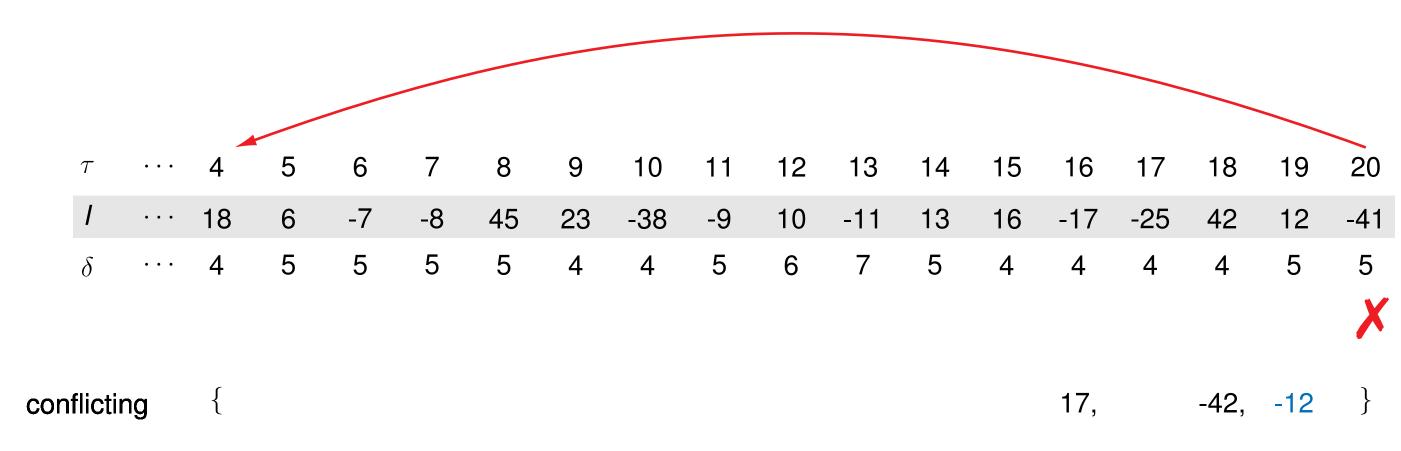
*I*_{≤4}

au	•••	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	•••	18	6	-7	-8	45	23	-38	-9	10	-11	13	16	-17	-25	42	12	-41
δ	•••	4	5	5	5	5	4	4	5	6	7	5	4	4	4	4	5	5



conflicting

28



backtrack level 4

au	•••	4	5	6	7	8	9	10	11
1	•••	18	23	-38	16	-17	-25	42	-12
δ	•••	4	4	4	4	4	4	4	4

```
True: (F, I, \delta) \sim_{\text{True}} \text{SAT} if F|_I = \top

False: (F, I, \delta) \sim_{\text{False}} \text{UNSAT} if exists C \in F with C|_I = \bot and \delta(C) = 0

Unit: (F, I, \delta) \sim_{\text{Unit}} (F, I\ell, \delta[\ell \mapsto a]) if F|_I \neq \top and \bot \notin F|_I and

exists C \in F with \{\ell\} = C|_I and a = \delta(C \setminus \{\ell\})

Jump: (F, I, \delta) \sim_{\text{Jump}} (F \land D, PK\ell, \delta[L \mapsto \infty][\ell \mapsto j]) if exists C \in F with

PQ = I and C|_I = \bot such that c = \delta(C) = \delta(D) > 0 and \ell \in D and

\ell|_Q = \bot and F \models D and j = \delta(D \setminus \{\ell\}) and b = \delta(P) and

j \leq b < c and K = Q_{\leq b} and L = Q_{>b}
```

Decide: $(F, I, \delta) \sim_{\text{Decide}} (F, I\ell, \delta[\ell \mapsto d])$ if $F|_I \neq \top$ and $\perp \notin F|_I$ and units $(F|_I) = \emptyset$ and $V(\ell) \in V$ and $\delta(\ell) = \infty$ and $d = \delta(I) + 1$

```
True: (F, I, \delta) \sim_{\text{True}} \text{SAT} if F|_{I} = \top

False: (F, I, \delta) \sim_{\text{False}} \text{UNSAT} if exists C \in F with C|_{I} = \bot and \delta(C) = 0

Unit: (F, I, \delta) \sim_{\text{Unit}} (F, I\ell, \delta[\ell \mapsto a]) if F|_{I} \neq \top and \bot \notin F|_{I} and

exists C \in F with \{\ell\} = C|_{I} and a = \delta(C \setminus \{\ell\})

Jump: (F, I, \delta) \sim_{\text{Jump}} (F \land D, PK\ell, \delta[L \mapsto \infty][\ell \mapsto j]) if exists C \in F with

PQ = I and C|_{I} = \bot such that c = \delta(C) = \delta(D) > 0 and \ell \in D and

\ell|_{Q} = \bot and F \models D and j = \delta(D \setminus \{\ell\}) and b = \delta(P) and

b = c - 1 and K = Q_{\leq b} and L = Q_{>b}
```

Decide: $(F, I, \delta) \sim_{\text{Decide}} (F, I\ell, \delta[\ell \mapsto d])$ if $F|_I \neq \top$ and $\perp \notin F|_I$ and units $(F|_I) = \emptyset$ and $V(\ell) \in V$ and $\delta(\ell) = \infty$ and $d = \delta(I) + 1$

```
True: (F, I, \delta) \sim_{\text{True}} \text{SAT} if F|_{I} = \top

False: (F, I, \delta) \sim_{\text{False}} \text{UNSAT} if exists C \in F with C|_{I} = \bot and \delta(C) = 0

Unit: (F, I, \delta) \sim_{\text{Unit}} (F, I\ell, \delta[\ell \mapsto a]) if F|_{I} \neq \top and \bot \notin F|_{I} and

exists C \in F with \{\ell\} = C|_{I} and a = \delta(C \setminus \{\ell\})

Jump: (F, I, \delta) \sim_{\text{Jump}} (F \land D, PK\ell, \delta[L \mapsto \infty][\ell \mapsto j]) if exists C \in F with

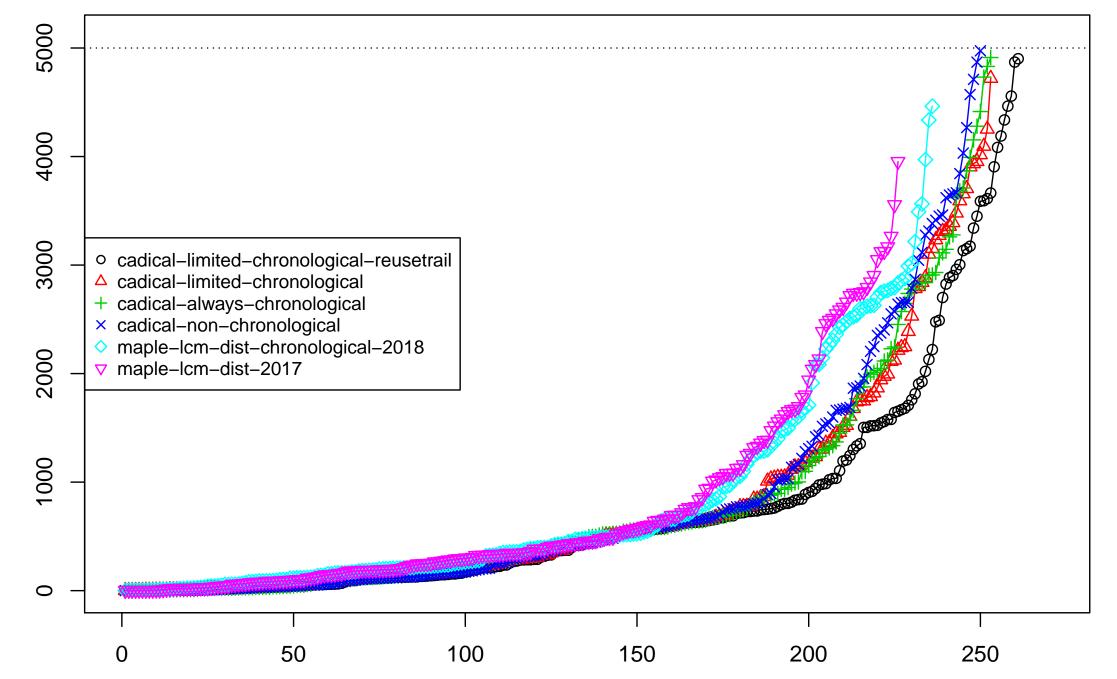
PQ = I and C|_{I} = \bot such that c = \delta(C) = \delta(D) > 0 and \ell \in D and

\ell|_{Q} = \bot and F \models D and j = \delta(D \setminus \{\ell\}) and b = \delta(P) and

b = j and K = Q_{\leq b} and L = Q_{>b}
```

Decide: $(F, I, \delta) \sim_{\text{Decide}} (F, I\ell, \delta[\ell \mapsto d])$ if $F|_I \neq \top$ and $\perp \notin F|_I$ and units $(F|_I) = \emptyset$ and $V(\ell) \in V$ and $\delta(\ell) = \infty$ and $d = \delta(I) + 1$

Experiments — Main Track of SAT Competition 2018



Experiments

achuar configurationa	SC	lved inst	ances
solver configurations	total	SAT	UNSAT
cadical-limited-chronological-reusetrail	261	155	106
cadical-limited-chronological	253	147	106
cadical-always-chronological	253	148	105
cadical-non-chronological	250	144	106
maple-lcm-dist-chronological-2018	236	134	102
maple-lcm-dist-2017	226	126	100

Combining Conflict-Driven Clause Learning and Chronological Backtracking for Propositional Model Counting (GCAI'19)

The Main Idea

$$F = (\overline{p} \lor q) \land (p \lor q) \longrightarrow$$

$$W = \{p, q, r\}$$

$$M = (r \land q) \lor (\overline{r} \land p \land q) \lor (\overline{r} \land \overline{p} \land q) = C_1 \lor C_2 \lor C_3$$

$$M \equiv F \text{ and } \#M = \sum_{i=1}^3 2^{|V-C_i|} = 4 = \#F$$

$$\#F = \sum_{C \in M} 2^{|V-C|}$$

and

M is a Disjoint-Sum-of-Products (DSOP) representation of F

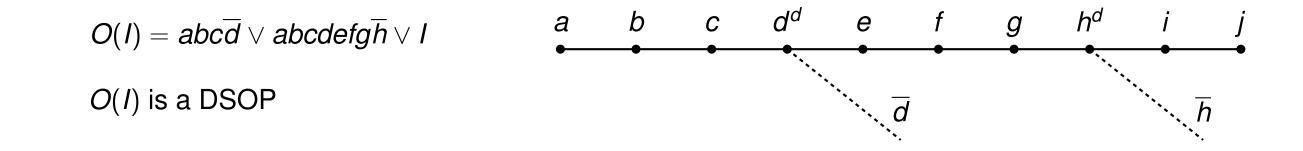
- *M* is a disjunction of conjunctions of literals (cubes)
- The cubes in *M* are pairwise contradicting
- \blacksquare *M* is logically equivalent to *F*
- *M* is not unique

The Main Idea

Assignment Trail /

 $I = abcd^{d} efgh^{d} ij$ $a b c d^{d} e f g h^{d} i j$

Pending Search Space O(I)



Pending Models of $F = F \land O(I)$

Models of *F* found *M*

The Main Idea

During execution, we have that

$$O(I) \wedge F \vee M \equiv F$$
 and $\#F = \#(F \wedge O(I)) + \sum_{C \in M} 2^{|V-C|}$

Upon termination, we have $O(I) = \bot$, hence

$$M \equiv F$$
 and $\#F = \sum_{C \in M} 2^{|V-C|}$

Example

$${m F} = (\overline{{m
ho}} \lor {m q}) \land ({m
ho} \lor {m q}) \qquad {m V} = \{{m
ho}, {m q}, {m r}\}$$

Step	Rule	1	$F _{I}$	М	
0		ε	$(\overline{ ho} ee q) \land (ho ee q)$	L	
1	Decide	r ^d	$(\overline{ ho} \lor q) \land (ho \lor q)$	1	
2	Decide	$r^d q^d$	Т	\perp	
3	BackTrue	$r^{d}\overline{q}$	$(\overline{ ho})\wedge(ho)$	rq	
4	Unit	r ^d qp	\perp	rq	
5	BackFalse	r	$(\overline{ ho} \lor q) \land (ho \lor q)$	rq	
6	Decide	<i>ī</i> p ^d	(q)	rq	
7	Unit	<i>ī</i> p ^d q	Т	rq	
8	BackTrue	rp	(q)	$rq \lor \overline{r}pq$	
9	Unit	<u>rp</u> q	Т	$rq \lor \overline{r}pq$	
10	EndTrue			$rq \lor \overline{r}pq \lor \overline{rp}q$	

EndTrue: $(F, I, M, \delta) \sim_{\text{EndTrue}} M \vee I$ if $F|_{I} = \top$ and decs $(I) = \emptyset$ EndFalse: $(F, I, M, \delta) \sim_{\text{EndFalse}} M$ if exists $C \in F$ and $C|_I = \bot$ and $\delta(C) = 0$ $(F, I, M, \delta) \sim_{\text{Unit}} (F, I\ell, M, \delta[\ell \mapsto a])$ if $F|_I \neq \top$ and $\perp \notin F|_I$ and Unit: exists $C \in F$ with $\{\ell\} = C|_I$ and $a = \delta(C \setminus \{\ell\})$ BackTrue: $(F, I, M, \delta) \sim_{\text{BackTrue}} (F, PK\ell, M \lor I, \delta[L \mapsto \infty][\ell \mapsto e])$ if $F|_I = \top$ and PQ = I and D = decs(I) and $e + 1 = \delta(D) = \delta(I)$ and $\ell \in D$ and $e = \delta(D \setminus \{\ell\}) = \delta(P)$ and $K = Q_{\leq e}$ and $L = Q_{>e}$ BackFalse: $(F, I, M, \delta) \sim_{\text{BackFalse}} (F, PK\ell, M, \delta[L \mapsto \infty][\ell \mapsto j])$ if exists $C \in F$ and exists D with PQ = I and $C|_I = \bot$ and $c = \delta(C) = \delta(D) > 0$ such that $\ell \in D$ and $\overline{\ell} \in \text{decs}(I)$ and $\ell|_{Q} = \bot$ and $F \wedge \overline{M} \models D$ and $j = \delta(D \setminus \{\ell\})$ and $b = \delta(P) = c - 1$ and $K = Q_{\leq b}$ and $L = Q_{>b}$

Decide: $(F, I, M, \delta) \sim_{\text{Decide}} (F, I\ell^d, M, \delta[\ell \mapsto d])$ if $F|_I \neq \top$ and $\perp \notin F|_I$ and units $(F|_I) = \emptyset$ and $V(\ell) \in V$ and $\delta(\ell) = \infty$ and $d = \delta(I) + 1$

Conclusion

Our Contribution

- Combined chronological backtracking with CDCL for propositional model counting
- Formal calculus for propositional model counting based on these ideas
 - enumeration approach
 - no blocking clauses
 - escape search space regions with no solution
- Formal proof of correctness

Further Research

- Implement our rules to experimentally validate their effectiveness
- Investigate possible applications in SMT and QBF
- Extend our approach to projected model counting in combination with dual reasoning
- Target component-based reasoning