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Prune search space

Dual projected model counting

(tools Dualcountpro / Dualiza)

[YSIP’17, ICTAI’18]

Solve

Formalization of chronological CDCL

(implemented in CaDiCaL / Kissat)

[SAT’19]

Solve

Chronological CDCL for model counting

[GCAI’19]

Prune search space

Logical entailment for enumerating partial models

[SAT’20]

2



Outline

Motivation and Design Choices

Logical Entailment Condition Under Projection

Towards Four Flavors of Logical Entailment

Algorithm and Calculus

A Closer Look at the Calculus

Conclusion

3



Outline

Motivation and Design Choices

Logical Entailment Condition Under Projection

Towards Four Flavors of Logical Entailment

Algorithm and Calculus

A Closer Look at the Calculus

Conclusion

4



Motivation

Model Enumeration has Various Applications

lazy Satisfiability Modulo Theories (Sebastiani, JSAT, 2007)

predicate abstraction (Lahiri, Nieuwenhuis and Oliveras, CAV’06)

software product line engineering (Galindo et al., SPLC’16)

model checking (Biere et al., TACAS’99; McMillan, CAV’02; Strichman, CAV’00)

preimage computation (Li, Hsiao and Sheng, DATE’04; Sheng and Hsiao, DATE’03)

weighted model counting (Sang, Beame and Kautz, AAAI’05; Chavira and Darwiche, Artif. Intell., 2008)

weighted model integration (Morettin, Passerini and Sebastiani, IJCAI’17 and Artif. Intell., 2019)

no repetitions, please!
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Design Choices

We need. . .

. . . short (partial) models

model shrinking
(Tibebu and Fey, DDECS’18)

dual reasoning
(M and Biere, ICTAI’18)

logical entailment
(Sebastiani, arXiv.org, 2020)

Example F = (x ∧ y) ∨ (x ∧ ¬y)
F |x = y ∨ ¬y 6= 1

F |xy = F |x¬y = 1 =⇒ x |= F

. . . pairwise disjoint models

. . . projection

F (X, Y ) where X ∩ Y = ∅

X relevant variables
Y irrelevant variables

∃Y [F (X, Y ) ] project F (X, Y ) onto X

We get. . .

. . . Disjoint Sum-of-Products (DSOP)

well known in circuit design

logical entailm
ent

chronological CDCL

projection

dual reasoning

D
S

O
P
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Logical Entailment Condition under Projection

Given: F (X, Y ) formula over a set of relevant variables X and a set of irrelevant variables Y

I trail over variables in X ∪ Y

Entailment under projection onto X : ∀X∃Y [F |I ]

Example: F (X, Y ) = x1(x2 ↔ y2) X = {x1, x2} Y = {y2}

F |x1 = (x2 ↔ y2)

F |x1x2 = (1↔ y2) and F |x1x2y2 = 1

F |x1x2 = (0↔ y2) and F |x1x2 y2 = 1

=⇒ x1 |= F

the unassigned variables are quantified

Does for each JX exist one JY such that
F |I ′ = 1 where I ′ = I ∪ JX ∪ JY ?

QBF (ϕ) = 1 where ϕ = ∀X∃Y [F |I ] = 1?

But this check is expensive

8
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Main Idea

Formula F SAT solver Check assignment DSOP M
(Partial) Assignment I

Next assignment

F |I = 1

F |I ≈ 1

F |I ≡ 1

∀X∃Y [F |I ] = 1

10



Our Contribution

Formula F SAT solver Check assignment DSOP M
(Partial) Assignment I

Next assignment

F |I = 1

F |I ≈ 1

F |I ≡ 1

∀X∃Y [F |I ] = 1
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Four Flavors of Logical Entailment under Projection

1) F |I = 1 (syntactic check)

2) F |I ≈ 1 (incomplete check in P)

3) F |I ≡ 1 (semantic check in coNP)

4) ∀X∃Y [F |I ] = 1 (check in ΠP
2 )

F = (x1 ∨ y ∨ x2) X = {x1, x2} Y = {y}

I = x1: F |I = 1 =⇒ I |= F

11
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I = x1x2: F |I = y ∨ y 6= 1 but is valid

I = x1x2y: 0 ∈ BCP (¬F, I) =⇒ x1x2 |= F
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I = x1: P |I and N |I are non-constant and contain no units
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d
2t2t1y2 : N |I = 1
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Algorithm

Input: formula F (X, Y ) over variables X ∪ Y such that X ∩ Y = ∅, trail I , decision level function δ

Output: M DSOP representation of F projected onto X

Count (F )

1 I := ε; δ :=∞; M := 0

2 forever do
3 C := PropagateUnits (F , I , δ )
4 if C 6= 0 then
5 c := δ(C)

6 if c = 0 then return M
7 AnalyzeConflict (F , I , C, c )
8 else if all variables in X ∪ Y are assigned then
9 if V (decs(I)) ∩X = ∅ then return M ∨ π(I,X)

10 M :=M ∨ π(I,X)

11 b := δ(decs(π(I,X)))

12 Backtrack ( I , b− 1 )

13 else if Entails ( I , F ) then
14 if V (decs(I)) ∩X = ∅ then return M ∨ π(I,X)

15 M :=M ∨ π(I,X)

16 b := δ(decs(π(I,X)))

17 Backtrack ( I , b− 1 )

18 else Decide ( I , δ )
13
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Calculus

14



Outline

Motivation and Design Choices

Logical Entailment Condition Under Projection

Towards Four Flavors of Logical Entailment

Algorithm and Calculus

A Closer Look at the Calculus

Conclusion

15



Unit Propagation

Idea: Assign the propagated unit literal the decision level of its reason clause

Unit: (F, I, M, δ) ;Unit (F, I`, M, δ[` 7→ a]) if F |I 6= 0 and exists C ∈ F with {`} = C|I and a
def
= δ(C \ {`})
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Backtracking upon Model Found

Given: Formula F (X, Y ) over relevant variables X and irrelevant variables Y

Idea: Flip the last relevant decision literal

x1 x2
d x3 y1 x4

d y2 y4
d y5x5

d y3

X

x1 x2
d x3 y1 x4

d y2 x5

BackTrue: (F, I, M, δ) ;BackTrue (F, UK`, M +m, δ[L 7→ ∞][` 7→ b]) if ∀X∃Y [F |I ] = 1 and m
def
= π(I,X) and

D
def
= π(decs(I), X) and ` ∈ D and UV

def
= I and K

def
= V6b and b = δ(D \ {`}) = δ(U) and

b + 1
def
= δ(D) 6 δ(I) and L

def
= V>b

17
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= π(decs(I), X) and ` ∈ D and UV

def
= I and K

def
= V6b and b = δ(D \ {`}) = δ(U) and

b + 1
def
= δ(D) 6 δ(I) and L

def
= V>b
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Conclusion

Our Contribution

Method for computing partial assignments entailing the
formula on the fly

Inspired by the interaction of theory and SAT solvers in
SMT

Combines dual reasoning and chronological CDCL

Algorithm (in the paper)

Formalization (in the paper)

Entailment test in four flavors of increasing strength

F |I = 1 (syntactic check)

F |I ≈ 1 (incomplete check in P)

F |I ≡ 1 (semantic check in coNP)

∀X∃Y [F |I ] = 1 (check in ΠP
2 )

Further Research

Implement and validate our method

Target weighted model integration and model counting
with or without projection

Investigate methods concerning the implementation of
QBF oracles

Dependency schemes (Samer and Szeider, JAR, 2009)

Incremental QBF (Lonsing and Egly, CP’14)

Combine with decomposition-based approaches and
generate d-DNNF
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