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Projected Propositional Model Counting

SAT: Propositional satisfiability problem

m Is the propositional formula F' satisfiable?

Example F =axV Ty issatisfiable: [ = xy is a model of F

#SAT: Counting problem associated with SAT

m How many total models has F'?

Example F=xVZy and #F =3: models(F) = {xy, 2y, Ty}

#dSAT: Projected propositional model counting

m How many models has F' projected onto x?

Example F=xVZy and #3Jy[F|=2: models(y[F]) = {z,T}
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Counting Davis-Putnam (CDP)?

function CDP (F': propositional CNF formula; n: integer);

1. if F' is empty then
return 2";

2. if F' contains an empty clause then
return 0;

3. if F' contains a unit clause {/} then
P ={C-{l}|CeFl¢gC}
return CDP(F},n — 1);

4. choose a variable z of F;
F={C—{z} [ CeFz¢C}
Fo={C—-{z} | Ce F,x ¢&C};
return CDP(F;,n — 1) + CDP(F2,n — 1).

(Source: 1)

1 E. Birnbaum, E.L. Lozinskii, “The Good Old Davis-Putnam Procedure Helps Counting Models", JAIR, 1999.
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Decomposing-Davis-Putnam 2

DDP(F, o)
UNIT-PROPAGATE(F, O)
if ( ) in F then return 0
if all variables are assigned a value then return 1
Identify independent subproblems F,... F;
corresponding to connected components of F .
for each subproblem F.,i = 1...j do
oL € SELECT-BRANCH-VARIABLE(F))
¢, € DDP(F,U | (a)],ou{al) +
DDP(F, U { (-a)},c U{-a})

return H c;

i=1.7J

(Source: ?)

2 R.J. Bayardo, J.D. Pehoushek, “Counting Models Using Connected Components”, AAAI'00.



Decomposing-Davis-Putnam 2

DDP(F, o)
UNIT-PROPAGATE(F, O)
if ( ) in F then return 0 Enhancements
if all variables are assigned a value then return 1
Identify independent subproblems F,... F;
corresponding to connected components of F .

m Component caching3

for each subproblem F;, i = 1...j do m Efficient binary constraint propagation (BCP)*
oL € SELECT-BRANCH-VARIABLE(F))
c, ¢« DDP(F.U | (a)l,ou{al) + . 5
i DDP(F: Ol (=all.o Ul ~al) m Parallel version
return H c; o e
N m Distributed version
(Source: ?)

2 R.J. Bayardo, J.D. Pehoushek, “Counting Models Using Connected Components”, AAAI'00.

3 T. Sang et al., “Combining Component Caching and Clause Learning for Effective Model Counting”, SAT'04.
4 M. Thurley, “sharpSAT — Counting Models with Advanced Component Caching and Implicit BCP", SAT'06.
> J. Burchard, T. Schubert, B. Becker, “Laissez-Faire Caching for Parallel #SAT Solving”, SAT'15.

® J. Burchard, T. Schubert, B. Becker, “Distributed Parallel #SAT Solving”, CLUSTER'16.
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The Search Space Needs to be Explored Exhaustively

V={p,qr}
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The Search Space Needs to be Explored Exhaustively
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The Search Space Needs to be Explored Exhaustively

F =(pVgA(pVa M =0
Fl, =®VvVgA(pVa M =0
Flqg = () A () M =0
Flygn= L M =0
Flyg =T M =0
Flyy=T M =1
Flyp=T M =2

V={p,qr}
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The Search Space Needs to be Explored Exhaustively

F =(pVgA(pVa M =0
Fl, =®VvVgA(pVa M =0
Flrg = (p) A (p) M =0 V={p.qr}
Flygn= L M =0
Flyg =T M =0
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The Search Space Needs to be Explored Exhaustively
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The Search Space Needs to be Explored Exhaustively

V={p,qr}
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The Search Space Needs to be Explored Exhaustively

V={p,qr}
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The Search Space Needs to be Explored Exhaustively

V={p,qr}
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The Search Space Needs to be Explored Exhaustively

V={p,qr}
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The Search Space Needs to be Explored Exhaustively
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The Search Space Needs to be Explored Exhaustively

F =(pVgA(pVa M =0

Fl, =®VvVgA(pVa M =0

Flrg = (p) A (p) M =0 V={p.qr}
Flygn= L M =0

Flyg =T M =0

Flygp=T M =1

Flyp=T M =2

Fl: =(@VaAlpVe — M=2 v
Flrg = (p) A (p) M =2 P B

Flrgs = M =2

Fljg =T M =2

Flrgp= M=3 X X

Fligp=T M =14

CDCL is biased towards conflicts!




Counting by Means of the Davis-Putnam-Logemann-Loveland (DPLL) Algorithm
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Counting by Means of the Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

(

L IS
o>
QL

[ Mo
S¥
9
=y
~
Q
SN
>
.

Suitability for #SAT
+ Search space is traversed in an ordered manner
+ The correct model count is returned
— Regions of the search space without solution can not be escaped easily

— Less efficient than with learning
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Non-Chronological Backtracking with Conflict-Driven Clause Learning (CDCL)
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Non-Chronological Backtracking with Conflict-Driven Clause Learning (CDCL)
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Non-Chronological Backtracking with Conflict-Driven Clause Learning (CDCL)
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Non-Chronological Backtracking with Conflict-Driven Clause Learning (CDCL)
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Suitability for #£SAT
+ Enables the solver to escape regions of the search space with no solution
+ Gain in performance (for SAT)
— Might result in a wrong model count

— Might lead to redundant work
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Chronological Conflict-Driven Clause Learning (Chronological CDCL)

Suitability for #SAT
+ Enables the solver to escape regions of the search space with no solution
+ Returns the correct model count
+ Avoids (at least some) redundant work
+

Does not degrade solver performance of state-of-the-art SAT solvers

13



Challenges and Solutions

Challenge Addressed by
Dual reasoning "*® Chronological CDCL *1011 Logical entailment 2
No expensive satisfiability checks v (V)
No exponential learning (V) v v
Good learning v (v')
Early model detection v v
Pruning of search space v v

" A. Biere, S. Holldobler, S. Mohle, “An Abstract Dual Propositional Model Counter”, YSIP'17.

8 S. Mohle, A. Biere, “Dualizing Projected Model Counting”, ICTAI'18.

9 S. Mahle, A. Biere, “Combining Conflict-Driven Clause Learning and Chronological Backtracking for Propositional Model Counting”, GCAI'19.
10°A. Nadel, V. Ryvchin, “Chronological Backtracking”, SAT'18.

11'S. Mohle, A. Biere, “Backing Backtracking”, SAT'19.

12'S. Mohle, R. Sebastiani, A. Biere, “Four Flavors of Logical Entailment”, SAT'20.
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Outline

B Solution 1: Dualizing Projected Model Counting
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Projected Model Counting

F(X,Y)

(arbitrary) propositional formula over sets of variables X and Y, where

X  relevant input variables
Y irrelevant input variables and X NY =0
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X  relevant input variables
Y irrelevant input variables and X NY =0

We are interested in the number of models projected onto X: #3JY [ F(X,Y)]

Example F(X,Y)=xVy

X = {z,y} Y =0 models(FY [ F(X,Y)]) = {zy, 7, Ty}

43IV [F(X,Y)] =3 =#F(X,Y)
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Projected Model Counting

F(X,Y) (arbitrary) propositional formula over sets of variables X and Y, where

X  relevant input variables
Y irrelevant input variables and X NY =0

We are interested in the number of models projected onto X: #3JY [ F(X,Y)]

Example F(X,Y)=xVy

X ={z,y} Y =1 models(FY [ F(X,Y)]) = {zy, 27y, Ty}
X ={z} Y = {y} models(AY | F(X,Y)]) = {z, T}
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Example

F(X,)Y)=pVqVrVs
-F(X,)Y)=pANGATAS

X =Ap,r, s}

Y ={q}
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Example

F(X,)Y)=pVqVrVs X ={p,r s} Y ={q}
—F(X,)Y)=pANGATAS
3 F - 0
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Example

F(X,Y):p\/q\/’r\/s XZ{p,"“,S} Y:{Q}
—F(X,)Y)=pANGATAS
g F —F 0
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Example

F(X,Y)=pVqVrVs X ={p,r, s} Y ={q}
—F(X,)Y)=pANGATAS

I F|; —F; M

€ F —F 0

s¢ T il 0

5 pNVaq\Vr PDANGANT 4
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Example

F(X,)Y)=pVqgVrVs X ={p,r, s} Y ={q}
—F(X,)Y)=pANGATAS

I F; —F|; M

€ F —F 0

st T 1 0

5 pNVaq\Vr PDANGANT 4

srf T i 1
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Example

F(X,Y)=pVqVrVs X ={p,r s} Y ={q}
—F(X,)Y)=pANGATAS

I F; —F; M
€ F —F 0
5¢ T 1 0
5 pNVaq\Vr PDANGANT 4
srd T il 4
5T pVq DAq 6



Example

F(X,)Y)=pVqgVrVs X ={p,r, s} Y ={q}
—F(X,)Y)=pANGATAS
I F; —F; M
€ F —F 0
51 T 1 0
S pVaqgVr DANGNT 4
srf T i 1
ST pVq DAQq 6
srp? T 1 6
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Example

F(X,)Y)=pVgVvrvs X=A{pnrs}t Y={q}
—F(X,)Y)=pANGATAS
I F|; —F; M
€ F —F 0
51 T 1 0
S pVaqgVr DANGNT 4
srf T i 1
ST pVq DAQq 6
srp? T 1 6
STD T 1L 7
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Example

F(X,)Y)=pVgVvrvs X=A{pnrs}t Y={q}
—F(X,)Y)=pANGATAS
I F|; —F; M
€ F —F 0
5 T 1 0
S pVaqgVr DANGNT 4
srf T i 1
ST pVq DAQq 6
srp? T 1 6
STD T il 7
STD T 1L 8

17



Our Contribution — the First Dual Calculus for Exact Projected Model Counting

EPO: (PNIM) ~gpg M if @EP|[ and decs(l):@
EP1: (P,N,I,M) ~sgpy M+ 2% if Pl =0 and var(decs(/)) N X = ()

ENO: (P, N,I,M) ~sgno M 2% if e N|; and var(decs(/)) N X =0

BPOF: (P, N, 091", M) ~sgpoe (PN, 1T M) if 0P|y and var(dees(l) = O and
m =3 {m| (" ¢ 1}

JPO: (PN, II',M) ~s3po (PAC NI, M—m') if 0P|y and Pl=C and C|;={¢} and
m =S {m| (f(m e 1"}

m'+m")

BPLF: (P, N, 1091, M) ~sgpre (PN 2" ™) M+ m") if Plyy=0 and var(f) € X and
var(decs('NNX =0 and m =3 {m| (™ c |'} and m" = 22XV

BP1L: (P, N, 1¢91", M) ~sgpi. (PAD,N,I{,M+m") if Plypy=10 and var(f) € X and
var(dees(/')) N X =0 and m” =2X-"71 and D = m(—decs(/¢), X)

18



Our Contribution — the First Dual Calculus for Exact Projected Model Counting

m"+m”)

BNOF: (P, N, 11", M) ~sgnor (P, N, 17"
var(decs(I'))N X =0 and m =5 {m| ¢f(m) IV and m! = X100

M+ m") if e N|y and var(¢) € X and

l

BNOL: (P, N, 191" M) ~sgnor (PAD,N, 1L, M4+ m") if (& Ny and var(f) € X and
var(decs(I'))N X =0 and m" = DX apnd D = m(—decs(10), X)

DX:  (P,N,I,M) ~spx (P,N, 104, M) if @& (PAN)|; and units((P A N)|;) =0 and
var(¢) € X — 1

DYS: (P,N,I,M) ~spys (P,N, 1t M) if O&(PAN); and units((P A N)|,) =0 and
var({) e (YUS)—1 and X — 1 =1

UP: (PN, I,M) ~syp (PN, 1L, M) if {{} € P|

UNXY: (P, N, I, M) ~uynxy (P, N, Ifd? M) if {{} € N|, and var(¢) e XUY and 0 & P|; and units(P|,) = ()

UNT: (P,N,I,M) ~ynt (P,N, 10, M) if {{} € N| and var(¢) € T and O ¢ P|; and units(P|;) = ()

FP: (PACT, NI, M) ~pp (PN I M) if O &P,

19



Our Dual Approach Facilitates the Detection of Partial Models

$ cat clause.form

plaglzrl s

$ dualiza -e -r p,r,s clause.form
ALL SATISFYING ASSIGNMENTS

S

r !s

lr Is

$ dualiza -r p,r,s clause.form
NUMBER SATISFYING ASSIGNMENTS

8

O O O 0O O 0O O &6

dualiza -r

LOG
LOG
LOG
LOG
LOG
LOG
LOG

1

W W NN~ =

RULE
RULE
RULE
RULE
RULE
RULE
RULE

p,r,s clause.form -1 | grep RULE

UNX 1 -4
UNX 2 -4
BNOF 1 -4
UNX 3 -3
BNOF 2 -3
UNY 1 -2
ENO 1

20



Can We Compete with State-of-the-Art #SAT Solvers?

$ cat clause4d.form
(x1 | x2 | x3 | x4)

21



Can We Compete with State-of-the-Art #SAT Solvers?

$ cat claused.form
(x1 | x2 | x3 | x4)

n Mode | sharpSAT [s] DUALIZA [s]

dual <1-1072 <1-1072
10 block <1-1072 2.1072

flip <1-1072 <1-1072

block 1-1072 9.10°1
20

flip 1-102 2.10~1

block 1-1072 4-10%
30 _

flip 1-1072 2.10?
100 dual <1-1072 <1-1072
1000 dual 8.1072 2.1072
10000 dual 1-10% 2.10~1

21



Where Our Dual Approach Really Wins

$ cat
(x1 |
(x5 =
(x6 =
(x7 =
(x8 =

nrp4.

x2 |

x1 ~

x1 ~

form
x3 |

x3 ~

x2 ~

x4)
x4)
x4)
x4)
x3)
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Where Our Dual Approach Really Wins

$ cat
(x1 |

(x6 =
(x7 =
(x8 =

nrp4.

x2 |

x1 ~

x1

form
x3 |

x2 ~

x4)
x4)
x4)
x4)
x3)

n Method sharpSAT [s] DUALIZA [s]
10 dual 9.1072 <1-1072
20 dual 7107 1-1072
21 dual 2103 1-1072
22 dual ¥ 1-1072
100 dual ¥ 8-1072
1000 | dual ¥ 1-10*

5000 | dual ¥ 2107

22



Outline

B Solution 2: Combining Conflict-Driven Clause Learning and Chronological Backtracking
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The Main ldea

F=(DVQNA([DV(Q) m—— —P N =(rAQ)V([FAPAQV(FAPAG) =C1VCyV Cs
Rules .
V ={p,qr} M=F and #M=>32V"Cl=4=4#F
1=1
Generalizing, #E =y 2V 0 and

M is a Disjoint-Sum-of-Products (DSOP) representation of F

m M is a disjunction of conjunctions of literals (cubes)
m [he cubes in M are pairwise contradicting

m M is logically equivalent to F’

m M is not unique

24



The Main ldea

Assignment Trail [

I = abede f ghtij

Pending Search Space  O(1)

O(I) = abed V abedefgh V 1

O(I) is a DSOP

Pending Models of F* F' A O(1)

Models of F' found M

¢

| R

SN

o ‘<.

| RS

| S

e O

O

e O

| Na)

.

o .

K4
4
4
K4
>
.
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The Main ldea

During execution, we have that

OI)NFVM=F

Upon termination, we have O(I) = L, hence

and

and

#E = #(FNO(I)) + ey 2VC

#F = ZCeM 2lV=C

26



Calculus

EndTrue:

(F, I, M, §) ~gngue MV I if F|;=T and decs(/) = 0

EndFalse: (F, I, M, §) ~gndraise M if exists Ce F and C|;=_1 and /(C) =0

Unit:

(F, I, M, &) ~unit (F, 1L, M, [¢— a]) if F|; 2T and L & F|; and
exists C € F with {{} = C|, and a=(C\ {/})

BackTrue: (F, I, M, $) ~packtve (F, PK¢, MV |, §[L — ][¢ — €]) if F|;=T and

PQ =1 and D =decs(/) and e+ 1 =4(D)=4(/) and ¢ € D and

BackFalse: (F, I, M, §) ~gackraise (F, PK{, M, §[L — ][l — j]) if exists C € F and

exists D with PQ=1 and C|,=_1 and ¢=04(C)=4(D) > 0 such that
{eD and ¢ cdecs(/) and ¢|g= L and FAM [ D and
j=0(D\{¢{}) and b=4§(P)=c—1 and K= Q< and L= Q.

Decide:

(F, I, M, §) ~pecide (F, 19, M, 5[¢ — d]) if F|;#T and L ¢ F|, and
units(F|;) = 0 and V(¢) € V and §(¢) = occ and d = (/) + 1

27



Outline

B Solution 3: Exploiting Logical Entailment
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Main Idea

Formula F

SAT solver

(Partial) Assignment

|

>

Check assignment

Next assignment

» DSOP M
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Our Contribution

Formula F >

SAT solver

(Partial) Assignment [

Fl;=T

Flr=1

Flr=1
VX3Y [F|;] =1

|

>

Check assignment

Next assignment

» DSOP M
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Logical Entailment Test under Projection

Given

F' formula over variables in X UY
1 trail over variablesin X UY
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Logical Entailment Test under Projection

Given

F' formula over variables in X UY
I trail over variablesin X UY

Quantified entailment condition

m In p =VXVY | F|;] the unassigned variables in X UY are quantified
m © = 1: all possible total extensions of [ satisfy F’
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Given

F' formula over variables in X UY
I trail over variablesin X UY

Quantified entailment condition

m In p =VXVY | F|;] the unassigned variables in X UY are quantified
m © = 1: all possible total extensions of [ satisfy F’

Entailment under projection onto the set of variables X

m Does for each Jx exist one Jy such that F'|;y = T where I' = T U Jx U Jy?
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Logical Entailment Test under Projection

Given

F' formula over variables in X UY
I trail over variablesin X UY

Quantified entailment condition

m In p =VXVY | F|;] the unassigned variables in X UY are quantified
m © = 1: all possible total extensions of [ satisfy F’

Entailment under projection onto the set of variables X

m Does for each Jx exist one Jy such that F'|;y = T where I' = T U Jx U Jy?

QBF(p) =T where o =VX3Y [F|;|=T7

30



Four Flavors of Logical Entailment under Projection

1) F|; = T (syntactic check)
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Four Flavors of Logical Entailment under Projection

1) F|; =T (syntactic check) F =x1yV yxs X =A{x1, 20}

2) F|; =~ 1 (incomplete check in P) I = 1129 Fli=yVy#T

[:ZClﬁCQgZ J_EBCP(F,I)

Y ={y}

but is valid

— Xr1T9 |: F
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Four Flavors of Logical Entailment under Projection

1) F|; = T (syntactic check) F'=x1(22y V Tay V 12y V 12y)

X ={x1, 22}

2) F|;r = 1 (incomplete check in P) [ = I(F) =22y V Iy VgV agy #T

3) F|; =1 (semantic check in coNP) P = CNF(F)
N = CNF(F):

P|; and N|; are non-constant and contain no units

N|r = (z2Vy)(22VY)(22VY)(T2VY):

Y ={y}

but is valid

SAT(NAI) =1 =

[EF
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Four Flavors of Logical Entailment under Projection

1) F|; = T (syntactic check)

2) F|; = 1 (incomplete check in P)
3) F|; = 1 (semantic check in coNP)

4) VX3Y [F|;] = 1 (check in IIY)

F = x1(x9 <> 1) X = {1, 25} Y = {42}

P =CNF(F) and N = CNF(F):

P = (%1)(81 V 82)(8_1_\/ £I?2>(S_1 V yg)(S_g V 113_2)(8__2 V y_g) where S = {81, 82}
N = <.f1 V tl V tg)(tl V ZCQ)(fl V _2)(t2 V .fg)(tg V y2> where T = {tl, tg}

I = xq: P|; and N|; are non-constant and contain no units
[ = zitatyyp Nij=T

o =YX (23 V Hfp]: QBF(p)=T = 2 F
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Algorithm

Input: formula F(X,Y") over variables X UY such that X N'Y = (), trail I, decision level function &
Output: DNF M consisting of models of F' projected onto X

Enumerate( F')

1 [ = d: =00 M :=_1

2 forever do

3 C' := PropagateUnits( F, I, §)

4 if C' # L then

5 c:=6(C)

6 if ¢ =0 then return M

7 AnalyzeConflict( F', I, C, c)

8  else if all variables in X U Y are assigned then

9 if V(decs(1)) N X =0 then return M V 7(1, X)
10 M =MVnr(l,X)

11 b := d(decs(w (I, X)))

12 Backtrack(I, b — 1)

13 else if Entails( I, F') then

14 if V(decs(I)) N X = then return M V 7(I, X)
14 M =MVnr(l,X)

15 b := d(decs(m (I, X)))

16 Backtrack(I, b — 1)

17 else Decide( I, 0 )
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Calculus

EndTrue:

EndFalse:

(F, I, M, §) ~tndte MV m if V(decs(I))NX =0 and

m = 7(I,X) and VX3IY [F|;]=1

(F, I, M, ) ~Endraise M if exists C € F' and C|r =0 and
6(C)=0

Unit:

(F, I, M, §) ~wunt (F, 16, M, §[¢ — a]) if F|r #0 and

def

exists C € F' with {{} = C|; and a = §(C\ {£})

BackTrue:

BackFalse:

(F, I, M, ) ~gacktre (F, UKE, MV m, 8[L — co][€ — b)) if
UV ET and D = n(decs(1), X) and b+ 1= §(D) < 8(I) and
teD and b=0d6(D\{})=6(U) and m = #(I,X) and

K= Ve and LEVo, and VXY [F|;] =1

(F, I, M, ) ~packrae (F, UKE, M, 5[L — o[l — j]) if

def

exists C' € F' and exists D with UV =1 and C|; =0 and

def

c=6(C)=6(D)>0 suchthat £€ D and ¢ € decs(/) and
lly =0 and FAMED and j= §(D\{¢}) and

def def

bE§(U)=c—1 and K = Ve, and L= V4,

DecideX:

DecideY:

(F, I, M, §) ~+pecdex (F, It%, M, §[{ — d]) if F|; #0 and
units(F|7) =0 and 6(f) =oc and d=§(I)+1 and V(¢) € X
(F, I, M, §) ~pecidey (F, 10, M, 6[( — d]) if F|; #0 and

def

units(F'|;) =0 and 6(¢) =00 and d=46(I)+1 and V() €Y and
X-I1=0
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Outline

B Conclusion and Future Work
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Conclusion

Our Contribution

First dual Calculus for exact projected model counting

m Search space pruning
m Good learning

Chronological CDCL for model counting

m Formal calculus and proof
m No exponential learning

Early Pruning

m Compute partial assignments entailing the formula
on-the-fly

m Entailment tests in four flavors of different strength
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Conclusion

Our Contribution

First dual Calculus for exact projected model counting

m Search space pruning
m Good learning

Chronological CDCL for model counting

m Formal calculus and proof
m No exponential learning

Early Pruning

m Compute partial assignments entailing the formula
on-the-fly
m Entailment tests in four flavors of different strength

Future Work

m Implement and validate our method exploiting logical
entailment

m Target weighted model integration and model counting
with or without projection

m Investigate methods concerning the implementation of
QBF oracles for exploiting logical entailment

m Combine with decomposition-based approaches and
generate d-DNNF
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Chronological CDCLx

11'S. Mohle, A. Biere, “Backing Backtracking”, SAT'19.
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CDCL Invariants

Trail:
ConflictLower:

Propagation:

LevelOrder:

ConflictingClause:

The assignment trail contains neither complementary pairs of literals nor duplicates.
The assignment trail preceding the current decision level does not falsify the formula.

On every decision level preceding the current decision level all unit clauses are propagated
until completion.

The literals are ordered on the assignment trail in ascending order with respect to their
decision level.

At decision levels greater than zero the conflicting clause contains at least two literals with
the current decision level.
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CDCL Invariants

Trail:

ConflictLower:

The assignment trail contains neither complementary pairs of literals nor duplicates.

The assignment trail preceding the current decision level does not falsify the formula.

Propagation:

LevelOrder:

ConflictingClause:

On every decision level preceding the current decision level all unit clauses are-propagated
+atil_completion.

The literals are ordered on-the assignment trail in ascending order with respect to their
decision level.

At decision levels greater than zero the conflicting clause contams-atleast two literals with
the current decision level.
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Combining CDCL with Chronological Backtracking
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Combining CDCL with Chronological Backtracking

T 4 5 6 7 8 9 10 11 12 13
I 4 5 30 47 15 18 6 -7 -8 45
5 3 4 4 4 4 5 5 5

decision literal
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Combining CDCL with Chronological Backtracking

T 4 5 6 I 3 9 10 11 12
I 4 5 30 47 15 18 6 -/ -3
0 3 4 L 4 4 5 5 5

block(1,4)

14

15
38

16
-23

17
17

18
44

19
-16
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Combining CDCL with Chronological Backtracking

T 4 5 6 I 3 9 10 11 12
I 4 5 30 47 15 18 6 -/ -3
0 3 4 L 4 4 5 5 5

slice(7,4)
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Combining CDCL with Chronological Backtracking
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Combining CDCL with Chronological Backtracking

conflicting

{

conflict level 6

17
17

-17,

18
44

44

19
-16
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Combining CDCL with Chronological Backtracking

conflicting

learned

{

-30,

47

47,

47,

15

18

-18,

11 12 13
7 -8 45
5 5 5

jump level 4

14

15
38

16
-23

23

17
17

-17,

18
44

_44

19
-16

39



Combining CDCL with Chronological Backtracking

conflicting

learned

{

-30,

47

47,

47,

15

18

-18,

12 13 14
-3 45 9
5 5 6

backtrack level 5

23
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Combining CDCL with Chronological Backtracking

40



Combining CDCL with Chronological Backtracking

T L 5 6
I 4 5 30
0 3 4 4
T 4 5 6
1 4 5 30
0 3 4 4

47

47

15

15

18

18

10 11
6 -7
5 5
10 11
6 -7
5 5

out of order
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23
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0 3 4 4
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Combining CDCL with Chronological Backtracking

T L 5 6
I 4 5 30
0 3 4 4
T 4 5 6
1 4 5 30
0 4 4

47

47

15

15

18

18

10

10

11

12

13
45

13
45

14
23
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Combining CDCL with Chronological Backtracking
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Combining CDCL with Chronological Backtracking

T 4 5 6 / 3 9 10 11 12
I 18 6 -7 -3 45 23 -38 -9 10
0 4 5 5 5 5 4 4 5 6

conflicting {

17,

42,

-12

41



Combining CDCL with Chronological Backtracking

T 4 5 6 7 8 9 10 11 12 13 14

i 18 6 -7 -8 45 23 38 -9 10 -11 13

) 4 5 5 5 5 4 4 5 6 7 5
conflicting {

backtrack level 4

17,

42,

19
12

20
.41

41



Combining CDCL with Chronological Backtracking
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Calculus

True: (F, I, 0) ~1e SAT if Fl;=T
False: (F, I, §) ~rpase UNSAT if exists C' € F' with C'|; = 1L and §(C')=0

Unit:  (F, I, §) ~unie (E, 10, 00 —a]) if F|;# T and 1L & F|; and
exists C' € F' with {{} =C|; and a=4(C\{/})

Jump: (F, I, 9) ~yump (FFAD, PK{, §|L — oo/l — j]) if exists C'€ F with
PQ =1 and C|; =1 suchthat ¢c=4(C)=6(D)>0 and £ € D and
llop=L and F=D and j=46(D\{¢}) and b=4(P) and
j<b<cland K=Q« and L =0

Decide: (F, I, §) ~pecide (F, 1€, 6|/{ —d]) if F|;# T and L & F|; and
units(F'|;) =0 and V({) €V and §(f) =00 and d=0(I)+1
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True: (F, I, 0) ~1e SAT if Fl;=T
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Unit:  (F, I, §) ~unie (E, 10, 00 —a]) if F|;# T and 1L & F|; and
exists C' € F' with {{} =C|; and a=4(C\{/})

Jump: (F, I, 9) ~yump (FFAD, PK{, §|L — oo/l — j]) if exists C'€ F with
PQ =1 and C|; =1 suchthat ¢c=4(C)=6(D)>0 and £ € D and
llop=L and F=D and j=46(D\{¢}) and b=4(P) and
b=c—1land K =Q« and L =0~

Decide: (F, I, §) ~pecide (F, 1€, 6|/{ —d]) if F|;# T and L & F|; and
units(F'|;) =0 and V({) €V and §(f) =00 and d=0(I)+1
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Calculus

True: (F, I, 0) ~1e SAT if Fl;=T
False: (F, I, §) ~rpase UNSAT if exists C' € F' with C'|; = 1L and §(C')=0

Unit:  (F, I, §) ~unie (E, 10, 00 —a]) if F|;# T and 1L & F|; and
exists C' € F' with {{} =C|; and a=4(C\{/})

Jump: (F, I, 9) ~yump (FFAD, PK{, §|L — oo/l — j]) if exists C'€ F with
PQ =1 and C|; =1 suchthat ¢c=4(C)=6(D)>0 and £ € D and
llop=L and F=D and j=46(D\{¢}) and b=4(P) and

b=jland K =Q« and L= Q-

Decide: (F, I, §) ~pecide (F, 1€, 6|/{ —d]) if F|;# T and L & F|; and
units(F'|;) =0 and V({) €V and §(f) =00 and d=0(I)+1

45



Invariants

Trail:

ConflictLower:

The assignment trail contains neither complementary pairs of literals nor duplicates.

The assignment trail preceding the current decision level does not falsify the formula.

Vi, 0 €decs().7(I, k) <71(l,0) = 6(k) < (L)

d(decs()) ={1,...,0(1)}

Vn € N. F' Adecse,,(I) E I<,
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Experiments — Main Track of SAT Competition 2018

o
[ B R R
o
LD
o
o _|
o
ﬂ-
o . . : .
8 —| o cadical-limited—chronological-reusetrail
™ A cadical-limited—chronological
+ cadical-always—chronological
X cadical-non—chronological
o maple—-Icm-dist-chronological-2018
8 —| v maple-lcm-dist-2017
N
o
o _|
o
—
o p—

0 50 100 150 200 250



Experiments

solver configurations

solved instances

total SAT UNSAT
cadical-limited-chronological-reusetrail 261 155 106
cadical-limited-chronological 253 147 106
cadical-always-chronological 253 148 105
cadical-non-chronological 250 144 106
maple-lcm-dist-chronological-2018 236 134 102
maple-lcm-dist-2017 226 126 100
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