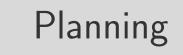
Addressing Proposition Model Counting and Enumeration with and without Projection

Sibylle Möhle

Institute for Formal Models and Verification LIT Secure and Correct Systems Lab

July 16, 2020

Who Wants the Model Count Anyway?



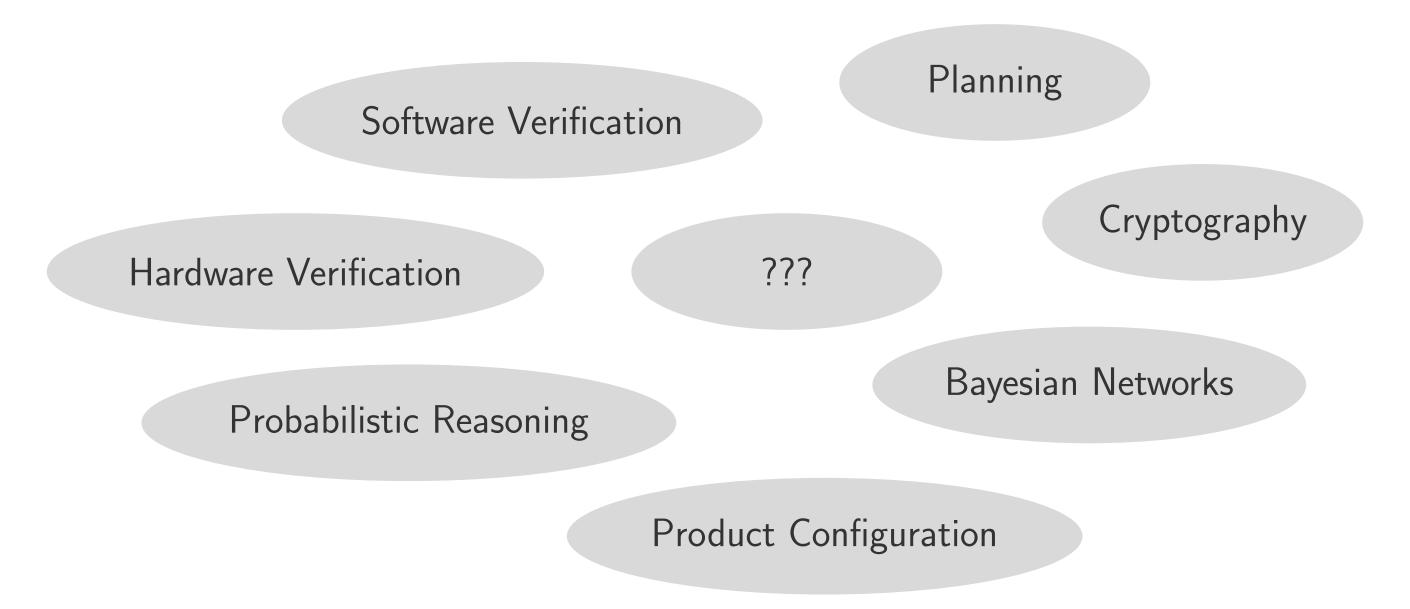
Software Verification

Hardware Verification

Bayesian Networks

Probabilistic Reasoning

Product Configuration



Projected Propositional Model Counting

SAT: Propositional satisfiability problem

■ Is the propositional formula *F* satisfiable?

Example $F = x \lor \overline{x}y$ is satisfiable: $I = x\overline{y}$ is a model of F

Projected Propositional Model Counting

SAT: Propositional satisfiability problem

■ Is the propositional formula *F* satisfiable?

Example $F = x \vee \overline{x}y$ is satisfiable: $I = x\overline{y}$ is a model of F

#SAT: Counting problem associated with SAT

■ How many total models has *F*?

Example $F = x \lor \overline{x}y$ and #F = 3: models $(F) = \{xy, x\overline{y}, \overline{x}y\}$

Projected Propositional Model Counting

SAT: Propositional satisfiability problem

■ Is the propositional formula *F* satisfiable?

Example $F = x \vee \overline{x}y$ is satisfiable: $I = x\overline{y}$ is a model of F

 $\# \mathsf{SAT}:$ Counting problem associated with SAT

■ How many total models has *F*?

Example $F = x \lor \overline{x}y$ and #F = 3: $models(F) = \{xy, x\overline{y}, \overline{x}y\}$

#3SAT: Projected propositional model counting

• How many models has F projected onto x?

Example $F = x \lor \overline{x}y$ and $\# \exists y [F] = 2$: models $(\exists y [F]) = \{x, \overline{x}\}$

Outline

State of the Art in Exact Model Counting

Challenges and Solutions

Solution 1: Dualizing Projected Model Counting

Solution 2: Combining Conflict-Driven Clause Learning and Chronological Backtracking

Solution 3: Exploiting Logical Entailment

Conclusion and Future Work

Outline

State of the Art in Exact Model Counting

Challenges and Solutions

Solution 1: Dualizing Projected Model Counting

Solution 2: Combining Conflict-Driven Clause Learning and Chronological Backtracking

Solution 3: Exploiting Logical Entailment

Conclusion and Future Work

Counting Davis-Putnam (CDP)¹

function CDP (F: propositional CNF formula; n: integer);

- 1. if F is empty then return 2^n ;
- 2. if F contains an empty clause then return 0;
- 3. if F contains a unit clause $\{l\}$ then $F_1 = \{C - \{\overline{l}\} \mid C \in F, l \notin C\};$ return $\text{CDP}(F_1, n - 1);$
- 4. choose a variable x of F; $F_1 = \{C - \{\bar{x}\} \mid C \in F, x \notin C\};$ $F_2 = \{C - \{x\} \mid C \in F, \bar{x} \notin C\};$ return $\text{CDP}(F_1, n - 1) + \text{CDP}(F_2, n - 1).$

Decomposing-Davis-Putnam²

```
DDP(F, \sigma)

UNIT-PROPAGATE(F, \sigma)

if () in F then return 0

if all variables are assigned a value then return 1

Identify independent subproblems F_1...F_j

corresponding to connected components of F.

for each subproblem F_i, i = 1...j do

\alpha \leftarrow SELECT-BRANCH-VARIABLE(F_i)

c_i \leftarrow DDP(F_i \cup \{(\alpha)\}, \sigma \cup \{\alpha\}) +

DDP(F_i \cup \{(\gamma\alpha)\}, \sigma \cup \{\gamma\alpha\})

return \prod_{i=1,...j} c_i
```

(Source: 2)

² R.J. Bayardo, J.D. Pehoushek, "Counting Models Using Connected Components", AAAI'00.

Decomposing-Davis-Putnam²

```
\begin{aligned} \text{DDP}(F, \sigma) \\ \text{UNIT-PROPAGATE}(F, \sigma) \\ \text{if } ( ) \text{ in } F \text{ then return } 0 \\ \text{if all variables are assigned a value then return } 1 \\ \text{Identify independent subproblems } F_1 \dots F_j \\ \text{ corresponding to connected components of } F \\ \text{for each subproblem } F_i, i = 1 \dots j \text{ do} \\ \alpha \leftarrow \text{SELECT-BRANCH-VARIABLE}(F_i) \\ c_i \leftarrow \text{DDP}(F_i \cup \{ (\alpha) \}, \sigma \cup \{ \alpha \}) + \\ \text{DDP}(F_i \cup \{ (\neg \alpha) \}, \sigma \cup \{ \neg \alpha \}) \\ \text{return } \prod_{i = 1 \dots j} c_i \\ \end{aligned}
```

(Source: ²)

Enhancements

- Component caching³
- Efficient binary constraint propagation (BCP)⁴
- Parallel version ⁵
- Distributed version ⁶

² R.J. Bayardo, J.D. Pehoushek, "Counting Models Using Connected Components", AAAI'00.
 ³ T. Sang et al., "Combining Component Caching and Clause Learning for Effective Model Counting", SAT'04.
 ⁴ M. Thurley, "sharpSAT – Counting Models with Advanced Component Caching and Implicit BCP", SAT'06.
 ⁵ J. Burchard, T. Schubert, B. Becker, "Laissez-Faire Caching for Parallel #SAT Solving", SAT'15.
 ⁶ J. Burchard, T. Schubert, B. Becker, "Distributed Parallel #SAT Solving", CLUSTER'16.

Outline

State of the Art in Exact Model Counting

Challenges and Solutions

Solution 1: Dualizing Projected Model Counting

Solution 2: Combining Conflict-Driven Clause Learning and Chronological Backtracking

Solution 3: Exploiting Logical Entailment

Conclusion and Future Work

 $F = (\bar{p} \lor q) \land (p \lor q) \qquad M = 0$

 $V = \{p, q, r\}$

$$\begin{array}{ll} F &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_r &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \end{array}$$

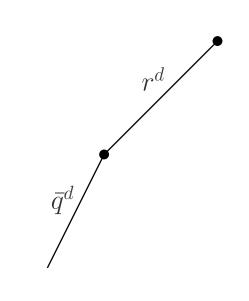
$$r^d$$

$$V = \{p, q, r\}$$

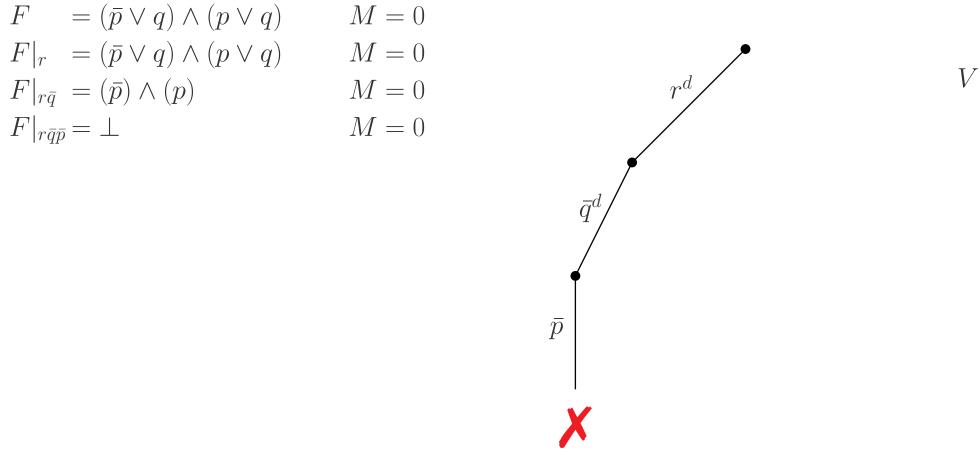
$$F = (\bar{p} \lor q) \land (p \lor q) \qquad M = 0$$

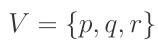
$$F|_r = (\bar{p} \lor q) \land (p \lor q) \qquad M = 0$$

$$F|_{r\bar{q}} = (\bar{p}) \land (p) \qquad M = 0$$

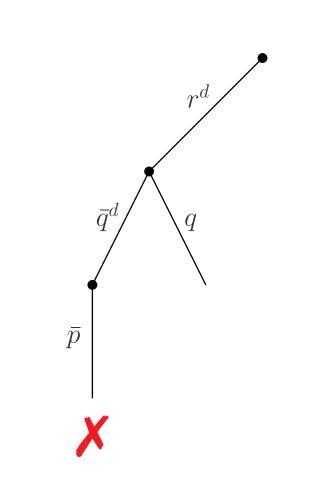


$$V = \{p, q, r\}$$





$$\begin{array}{ll} F &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_r &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_{r\bar{q}} &= (\bar{p}) \land (p) & M = 0 \\ F|_{r\bar{q}\bar{p}} = \bot & M = 0 \\ F|_{rq} &= \top & M = 0 \end{array}$$



$$V = \{p, q, r\}$$

10

$$F = (\bar{p} \lor q) \land (p \lor q) \qquad M = 0$$

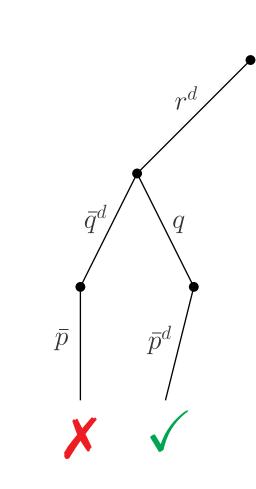
$$F|_{r} = (\bar{p} \lor q) \land (p \lor q) \qquad M = 0$$

$$F|_{r\bar{q}} = (\bar{p}) \land (p) \qquad M = 0$$

$$F|_{r\bar{q}\bar{p}} = \bot \qquad M = 0$$

$$F|_{rq} = \top \qquad M = 0$$

$$F|_{rq\bar{p}} = \top \qquad M = 1$$



$$F = (\bar{p} \lor q) \land (p \lor q) \qquad M = 0$$

$$F|_{r} = (\bar{p} \lor q) \land (p \lor q) \qquad M = 0$$

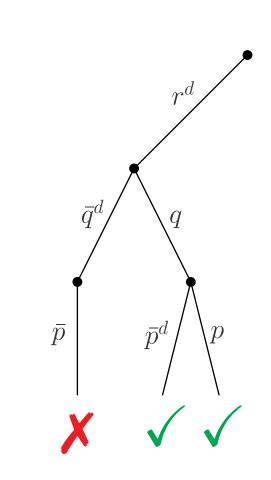
$$F|_{r\bar{q}} = (\bar{p}) \land (p) \qquad M = 0$$

$$F|_{r\bar{q}\bar{p}} = \bot \qquad M = 0$$

$$F|_{rq} = \top \qquad M = 0$$

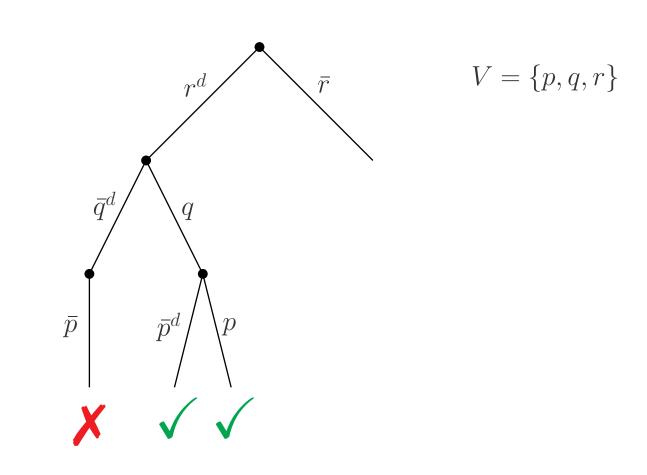
$$F|_{rq\bar{p}} = \top \qquad M = 1$$

$$F|_{rqp} = \top \qquad M = 2$$

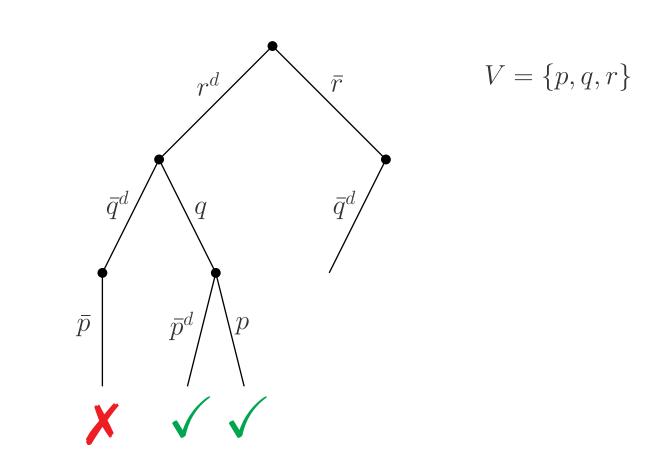


$$V = \{p, q, r\}$$

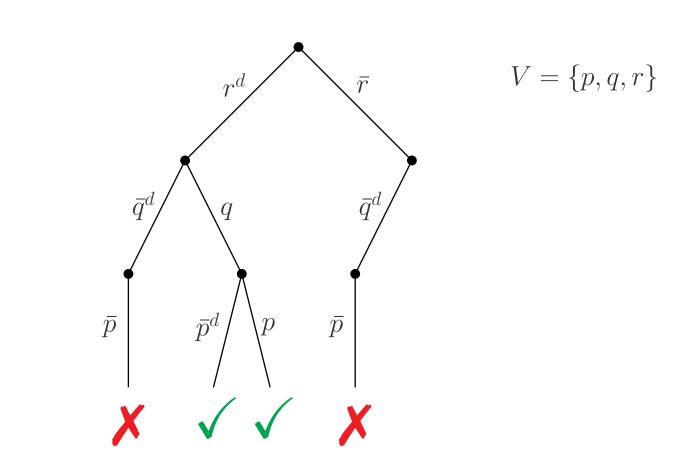
$$\begin{array}{ll} F &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_r &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_{r\bar{q}} &= (\bar{p}) \land (p) & M = 0 \\ F|_{r\bar{q}\bar{p}} = \bot & M = 0 \\ F|_{rq} &= \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 1 \\ F|_{rqp} = \top & M = 1 \\ F|_{rqp} = (\bar{p} \lor q) \land (p \lor q) & M = 2 \end{array}$$



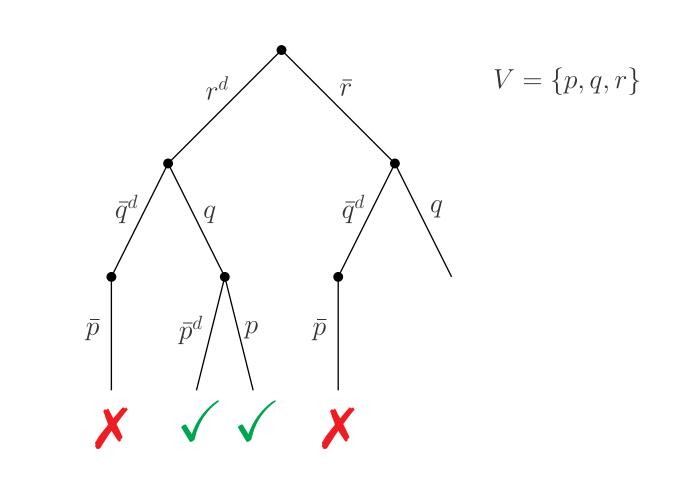
$$\begin{array}{ll} F &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_r &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_{r\bar{q}} &= (\bar{p}) \land (p) & M = 0 \\ F|_{r\bar{q}\bar{p}} = \bot & M = 0 \\ F|_{rq\bar{p}} = \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 1 \\ F|_{rqp} = \top & M = 1 \\ F|_{r\bar{q}p} = (\bar{p} \lor q) \land (p \lor q) & M = 2 \\ F|_{\bar{r}\bar{q}} &= (\bar{p}) \land (p) & M = 2 \end{array}$$



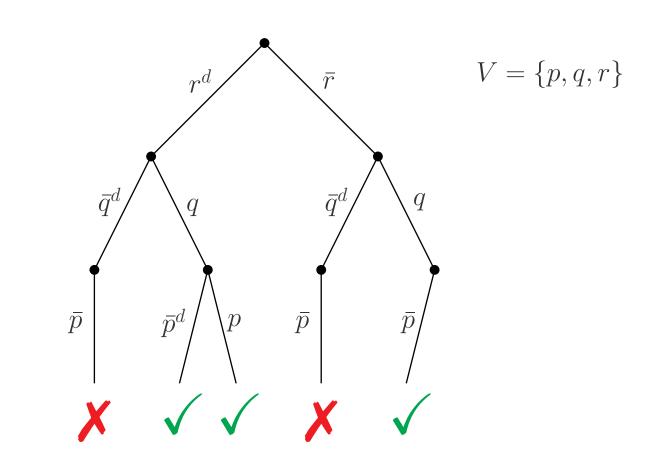
$$\begin{array}{ll} F &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_r &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_{r\bar{q}} &= (\bar{p}) \land (p) & M = 0 \\ F|_{r\bar{q}\bar{p}} = \bot & M = 0 \\ F|_{rq} &= \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 1 \\ F|_{rqp} = \top & M = 1 \\ F|_{\bar{r}q\bar{p}} = (\bar{p} \lor q) \land (p \lor q) & M = 2 \\ F|_{\bar{r}\bar{q}} &= (\bar{p}) \land (p) & M = 2 \\ F|_{\bar{r}\bar{q}\bar{p}} = \bot & M = 2 \\ \end{array}$$



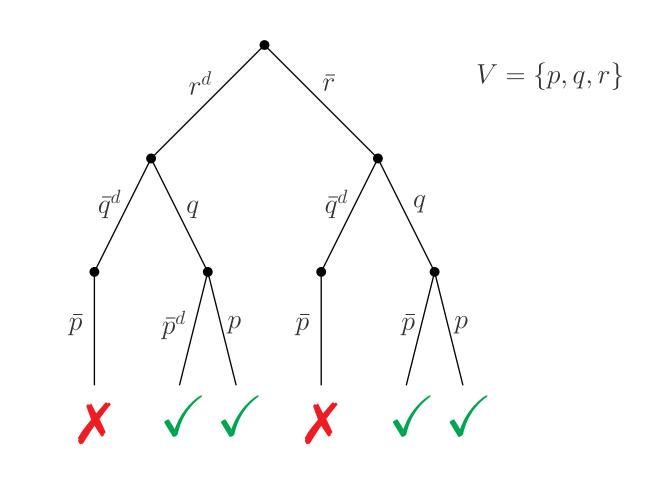
$$\begin{array}{ll} F &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_r &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_{r\bar{q}} &= (\bar{p}) \land (p) & M = 0 \\ F|_{r\bar{q}\bar{p}} = \bot & M = 0 \\ F|_{rq} &= \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 1 \\ F|_{rqp} = \top & M = 1 \\ F|_{\bar{r}q\bar{p}} = (\bar{p} \lor q) \land (p \lor q) & M = 2 \\ F|_{\bar{r}\bar{q}} &= (\bar{p}) \land (p) & M = 2 \\ F|_{\bar{r}\bar{q}} &= (\bar{p}) \land (p) & M = 2 \\ F|_{\bar{r}q} &= \top & M = 2 \\ F|_{\bar{r}q} &= \top & M = 2 \\ \end{array}$$



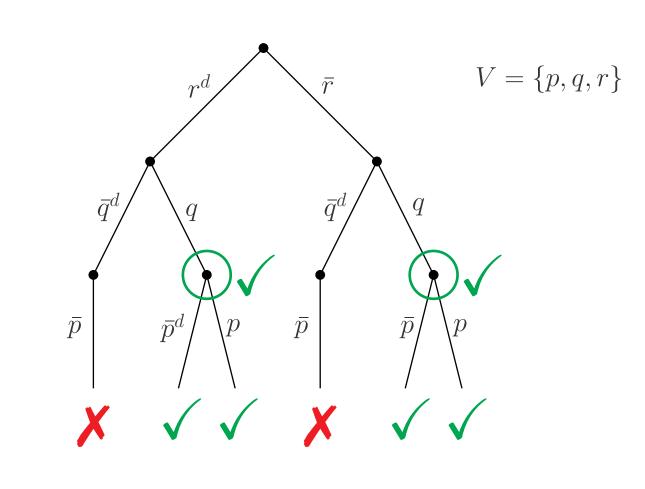
$$\begin{array}{ll} F &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_r &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_{r\bar{q}} &= (\bar{p}) \land (p) & M = 0 \\ F|_{r\bar{q}\bar{p}} = \bot & M = 0 \\ F|_{rq} &= \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 1 \\ F|_{rqp} = \top & M = 1 \\ F|_{r\bar{q}p} = (\bar{p} \lor q) \land (p \lor q) & M = 2 \\ F|_{\bar{r}\bar{q}} &= (\bar{p}) \land (p) & M = 2 \\ F|_{\bar{r}\bar{q}\bar{p}} = \bot & M = 2 \\ F|_{\bar{r}q\bar{p}} = \bot & M = 2 \\ F|_{\bar{r}q\bar{p}} = \top & M = 3 \end{array}$$



$$\begin{array}{ll} F &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_r &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_{r\bar{q}} &= (\bar{p}) \land (p) & M = 0 \\ F|_{r\bar{q}\bar{p}} = \bot & M = 0 \\ F|_{rq\bar{p}} = \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 1 \\ F|_{rqp} = \top & M = 1 \\ F|_{\bar{r}q\bar{p}} = (\bar{p} \lor q) \land (p \lor q) & M = 2 \\ F|_{\bar{r}\bar{q}} &= (\bar{p}) \land (p) & M = 2 \\ F|_{\bar{r}\bar{q}\bar{p}} = \bot & M = 2 \\ F|_{\bar{r}q\bar{p}} = \top & M = 3 \\ F|_{\bar{r}qp} = \top & M = 4 \end{array}$$

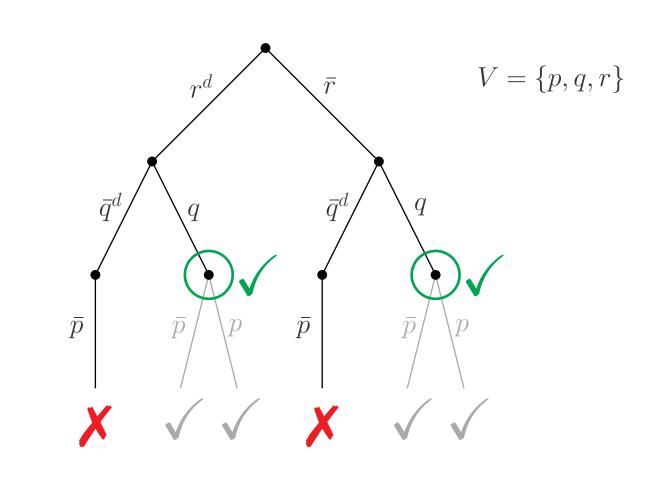


$$\begin{array}{ll} F &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_r &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_{r\bar{q}} &= (\bar{p}) \land (p) & M = 0 \\ F|_{r\bar{q}\bar{p}} = \bot & M = 0 \\ F|_{rq\bar{p}} = \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 1 \\ F|_{rqp} = \top & M = 1 \\ F|_{\bar{r}q\bar{p}} = (\bar{p} \lor q) \land (p \lor q) & M = 2 \\ F|_{\bar{r}\bar{q}} &= (\bar{p}) \land (p) & M = 2 \\ F|_{\bar{r}q\bar{p}} = \bot & M = 2 \\ F|_{\bar{r}q\bar{p}} = \bot & M = 2 \\ F|_{\bar{r}q\bar{p}} = \top & M = 2 \\ F|_{\bar{r}q\bar{p}} = \top & M = 3 \\ F|_{\bar{r}qp} = \top & M = 4 \end{array}$$

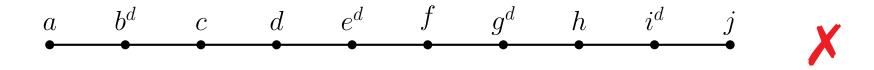


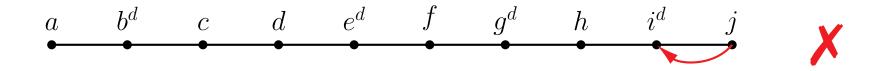
CDCL is biased towards conflicts!

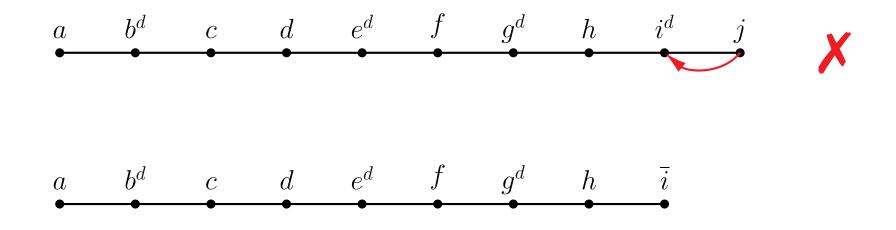
$$\begin{array}{ll} F &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_r &= (\bar{p} \lor q) \land (p \lor q) & M = 0 \\ F|_{r\bar{q}} &= (\bar{p}) \land (p) & M = 0 \\ F|_{r\bar{q}\bar{p}} = \bot & M = 0 \\ F|_{rq\bar{p}} = \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 0 \\ F|_{rq\bar{p}} = \top & M = 1 \\ F|_{rqp} = \top & M = 1 \\ F|_{\bar{r}q\bar{p}} = (\bar{p} \lor q) \land (p \lor q) & M = 2 \\ F|_{\bar{r}\bar{q}} &= (\bar{p}) \land (p) & M = 2 \\ F|_{\bar{r}q\bar{p}} = \bot & M = 2 \\ F|_{\bar{r}q\bar{p}} = \bot & M = 2 \\ F|_{\bar{r}q\bar{p}} = \top & M = 2 \\ F|_{\bar{r}q\bar{p}} = \top & M = 3 \\ F|_{\bar{r}qp} = \top & M = 4 \end{array}$$

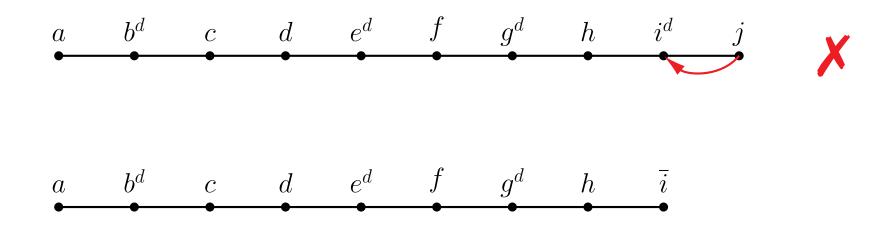


CDCL is biased towards conflicts!



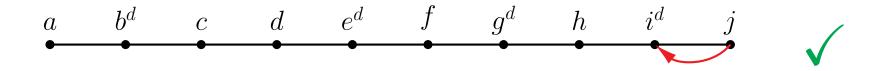


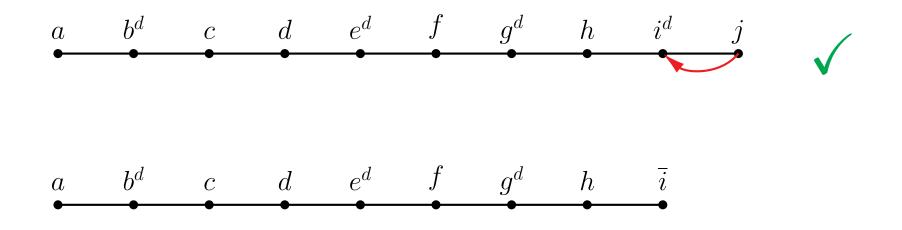


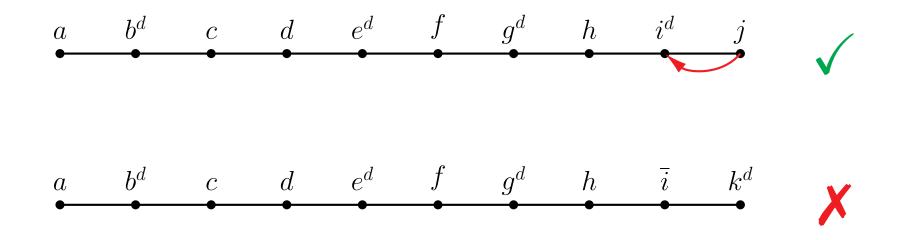


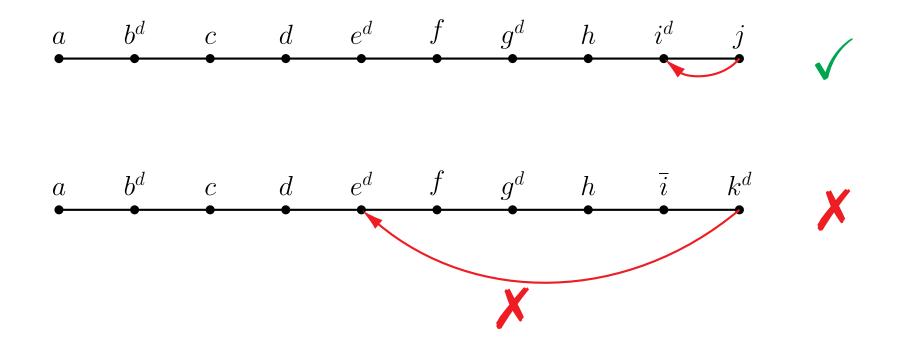
Suitability for #SAT

- + Search space is traversed in an ordered manner
- + The correct model count is returned
- Regions of the search space without solution can not be escaped easily
- Less efficient than with learning

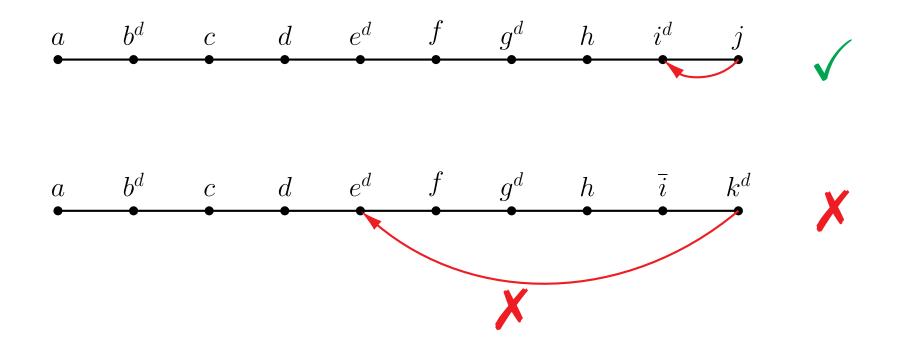








Non-Chronological Backtracking with Conflict-Driven Clause Learning (CDCL)



Suitability for #SAT

- + Enables the solver to escape regions of the search space with no solution
- + Gain in performance (for SAT)
- Might result in a wrong model count
- Might lead to redundant work

Chronological Conflict-Driven Clause Learning (Chronological CDCL)

Suitability for #SAT

- + Enables the solver to escape regions of the search space with no solution
- + Returns the correct model count
- + Avoids (at least some) redundant work
- + Does not degrade solver performance of state-of-the-art SAT solvers

Challenge	Addressed by				
	Dual reasoning ^{7,8}	Chronological CDCL 9,10,11	Logical entailment ¹²		
No expensive satisfiability checks	\checkmark		(√)		
No exponential learning	(\checkmark)	\checkmark	\checkmark		
Good learning	\checkmark		(\checkmark)		
Early model detection	\checkmark		\checkmark		
Pruning of search space	\checkmark		\checkmark		

⁷ A. Biere, S. Hölldobler, S. Möhle, "An Abstract Dual Propositional Model Counter", YSIP'17.

- ⁸ S. Möhle, A. Biere, "Dualizing Projected Model Counting", ICTAI'18.
- ⁹ S. Möhle, A. Biere, "Combining Conflict-Driven Clause Learning and Chronological Backtracking for Propositional Model Counting", GCAI'19.

¹⁰ A. Nadel, V. Ryvchin, "Chronological Backtracking", SAT'18.

¹¹ S. Möhle, A. Biere, "Backing Backtracking", SAT'19.

¹² S. Möhle, R. Sebastiani, A. Biere, "Four Flavors of Logical Entailment", SAT'20.

Outline

State of the Art in Exact Model Counting

Challenges and Solutions

Solution 1: Dualizing Projected Model Counting

Solution 2: Combining Conflict-Driven Clause Learning and Chronological Backtracking

Solution 3: Exploiting Logical Entailment

Conclusion and Future Work

F(X,Y) (arbitrary) propositional formula over sets of variables X and Y, where

- *X* relevant input variables
- *Y* irrelevant input variables and $X \cap Y = \emptyset$

F(X,Y) (arbitrary) propositional formula over sets of variables X and Y, where

- *X* relevant input variables
- *Y* irrelevant input variables and $X \cap Y = \emptyset$

We are interested in the number of models projected onto X: $\#\exists Y [F(X,Y)]$

F(X,Y) (arbitrary) propositional formula over sets of variables X and Y, where

- *X* relevant input variables
- *Y* irrelevant input variables and $X \cap Y = \emptyset$

We are interested in the number of models projected onto X: $\#\exists Y [F(X,Y)]$

$$\begin{array}{ll} \mathsf{Example} & F(X,Y) = x \lor y \\ X = \{x,y\} & Y = \emptyset & \mathsf{models}(\exists Y \, [\, F(X,Y) \,]) = \{xy, x\overline{y}, \overline{x}y\} & \# \exists Y \, [\, F(X,Y) \,] = 3 = \# F(X,Y) \end{array}$$

F(X,Y) (arbitrary) propositional formula over sets of variables X and Y, where

- X relevant input variables
- *Y* irrelevant input variables and $X \cap Y = \emptyset$

We are interested in the number of models projected onto X: $\#\exists Y [F(X,Y)]$

Example $F(X, Y) = x \lor y$

 $\begin{array}{ll} X = \{x,y\} & Y = \emptyset & \operatorname{models}(\exists Y \left[\left. F(X,Y) \right. \right] \right) = \{xy,x\overline{y},\overline{x}y\} \\ X = \{x\} & Y = \{y\} & \operatorname{models}(\exists Y \left[\left. F(X,Y) \right. \right] \right) = \{x,\overline{x}\} \end{array}$

 $#\exists Y [F(X,Y)] = 3 = #F(X,Y)$ $#\exists Y [F(X,Y)] = 2$

$$\begin{split} F(X,Y) &= p \lor q \lor r \lor s \qquad X = \{p,r,s\} \qquad Y = \{q\} \\ \neg F(X,Y) &= \bar{p} \land \bar{q} \land \bar{r} \land \bar{s} \end{split}$$

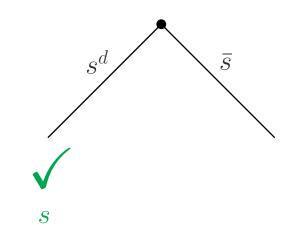
Ι	$F _I$	$\neg F _I$	M
ε	F	$\neg F$	0

•

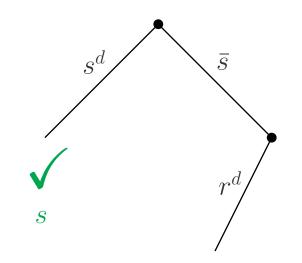
 Ι	$F _I$	$\neg F _I$	M
${\mathcal E}$	F	$\neg F$	0
s^d	\top	\perp	0

 s^d

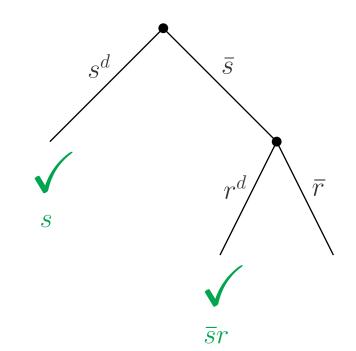
Ι	$F _I$	$\neg F _I$	M
${\mathcal E}$	F	$\neg F$	0
s^d	Т	\perp	0
\overline{S}	$p \lor q \lor r$	$\bar{p}\wedge\bar{q}\wedge\bar{r}$	4



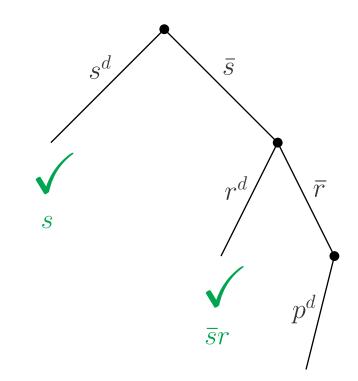
Ι	$F _I$	$\neg F _I$	M
arepsilon	F	$\neg F$	0
s^d	Т	\perp	0
\overline{S}	$p \lor q \lor r$	$\bar{p}\wedge\bar{q}\wedge\bar{r}$	4
$\overline{s}r^d$	Т	\bot	4



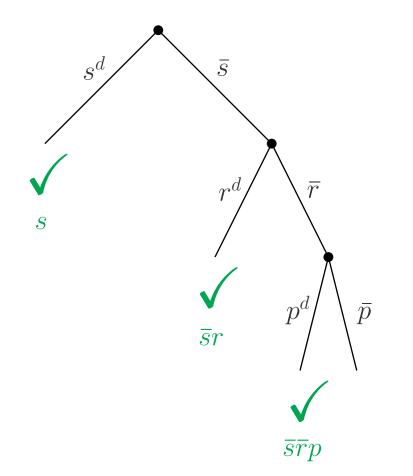
Ι	$F _I$	$\neg F _I$	M
ε	F	$\neg F$	0
s^d	\top	\perp	0
\overline{S}	$p \lor q \lor r$	$\bar{p}\wedge\bar{q}\wedge\bar{r}$	4
$\overline{s}r^d$	Т	\perp	4
\overline{sr}	$p \lor q$	$\bar{p}\wedge\bar{q}$	6



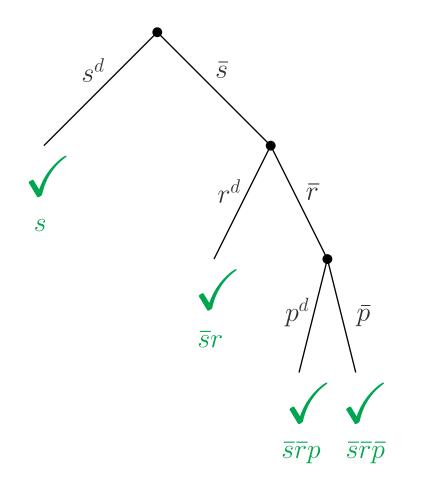
Ι	$F _I$	$\neg F _I$	M
ε	F	$\neg F$	0
s^d	Т	\perp	0
\overline{S}	$p \lor q \lor r$	$\bar{p}\wedge\bar{q}\wedge\bar{r}$	4
$\overline{s}r^d$	\top	\perp	4
$\overline{s}\overline{r}$	$p \lor q$	$\bar{p}\wedge\bar{q}$	6
$\overline{s}\overline{r}p^d$	\top	\perp	6



Ι	$F _I$	$\neg F _I$	M
ε	F	$\neg F$	0
s^d	Т	\perp	0
\overline{S}	$p \lor q \lor r$	$\bar{p}\wedge\bar{q}\wedge\bar{r}$	4
$\overline{s}r^d$	Т	\perp	4
$\overline{s}\overline{r}$	$p \lor q$	$\bar{p}\wedge\bar{q}$	6
$\overline{s}\overline{r}p^d$	Т	\perp	6
$\overline{s}\overline{r}\overline{p}$	Т	\perp	7



Ι	$F _I$	$\neg F _I$	M	
ε	F	$\neg F$	0	
s^d	Т	\perp	0	
\overline{S}	$p \lor q \lor r$	$\bar{p}\wedge\bar{q}\wedge\bar{r}$	4	
$\overline{s}r^d$	Т	\perp	4	
$\overline{s}\overline{r}$	$p \lor q$	$\bar{p}\wedge\bar{q}$	6	
$\overline{s}\overline{r}p^d$	Т	\perp	6	
$\overline{s}\overline{r}\overline{p}$	Т	\perp	7	
$\overline{s}\overline{r}\overline{p}$	Т	\perp	8	



Our Contribution — the First Dual Calculus for Exact Projected Model Counting

EPO: $(P, N, I, M) \sim_{\text{EPO}} M$ if $\emptyset \in P|_I$ and $\operatorname{decs}(I) = \emptyset$ EP1: $(P, N, I, M) \sim_{\text{EP1}} M + 2^{|X-I|}$ if $P|_I = \emptyset$ and $\operatorname{var}(\operatorname{decs}(I)) \cap X = \emptyset$ ENO: $(P, N, I, M) \sim_{\mathsf{ENO}} M + 2^{|X-I|}$ if $\emptyset \in N|_I$ and $\operatorname{var}(\operatorname{decs}(I)) \cap X = \emptyset$ BP0F: $(P, N, I\ell^d I', M) \sim_{\mathsf{BP0F}} (P, N, I\overline{\ell}^{f(m')}, M)$ if $\emptyset \in P|_{I\ell I'}$ and $\operatorname{var}(\operatorname{decs}(I')) = \emptyset$ and $m' = \sum \{m \mid \ell^{f(m)} \in I'\}$ JP0: $(P, N, II', M) \rightsquigarrow_{JP0} (P \land C^r, N, I\ell', M - m')$ if $\emptyset \in P|_{II'}$ and $P \models C$ and $C|_I = \{\ell'\}$ and $m' = \sum \{m \mid \ell^{f(m)} \in I'\}$ BP1F: $(P, N, I\ell^d I', M) \sim_{BP1F} (P, N, I\bar{\ell}^{f(m'+m'')}, M+m'')$ if $P|_{I\ell I'} = \emptyset$ and $var(\ell) \in X$ and $\operatorname{var}(\operatorname{decs}(I')) \cap X = \emptyset$ and $m' = \sum \{m \mid \ell^{f(m)} \in I'\}$ and $m'' = 2^{|X - I\ell I'|}$ BP1L: $(P, N, I\ell^d I', M) \sim_{BP1L} (P \land D, N, I\overline{\ell}, M + m'')$ if $P|_{I\ell I'} = \emptyset$ and $var(\ell) \in X$ and $\operatorname{var}(\operatorname{decs}(I')) \cap X = \emptyset$ and $m'' = 2^{|X - I\ell I'|}$ and $D = \pi(\neg \operatorname{decs}(I\ell), X)$

Our Contribution — the First Dual Calculus for Exact Projected Model Counting

- BNOF: $(P, N, I\ell^d I', M) \rightsquigarrow_{BNOF} (P, N, I\overline{\ell}^{f(m'+m'')}, M+m'')$ if $\emptyset \in N|_{I\ell I'}$ and $var(\ell) \in X$ and $var(decs(I')) \cap X = \emptyset$ and $m' = \sum \{m \mid \ell^{f(m)} \in I'\}$ and $m'' = 2^{|X I\ell I'|}$
- BNOL: $(P, N, I\ell^d I', M) \sim_{BNOL} (P \land D, N, I\overline{\ell}, M + m'')$ if $\emptyset \in N|_{I\ell I'}$ and $var(\ell) \in X$ and $var(decs(I')) \cap X = \emptyset$ and $m'' = 2^{|X I\ell I'|}$ and $D = \pi(\neg decs(I\ell), X)$
- DX: $(P, N, I, M) \rightsquigarrow_{DX} (P, N, I\ell^d, M)$ if $\emptyset \notin (P \land N)|_I$ and $units((P \land N)|_I) = \emptyset$ and $var(\ell) \in X I$
- DYS: $(P, N, I, M) \rightsquigarrow_{\text{DYS}} (P, N, I\ell^d, M)$ if $\emptyset \notin (P \land N)|_I$ and $\text{units}((P \land N)|_I) = \emptyset$ and $\text{var}(\ell) \in (Y \cup S) I$ and $X I = \emptyset$

UP: $(P, N, I, M) \sim_{UP} (P, N, I\ell, M)$ if $\{\ell\} \in P|_I$

 $\mathsf{UNXY:}\ (P,N,I,M) \ \rightsquigarrow_{\mathsf{UNXY}}\ (P,N,I\overline{\ell}^d,M) \quad \text{if} \quad \{\ell\} \in N|_I \text{ and } \mathrm{var}(\ell) \in X \cup Y \text{ and } \emptyset \not\in P|_I \text{ and } \mathrm{units}(P|_I) = \emptyset$

 $\mathsf{UNT:} \ (P, N, I, M) \ \rightsquigarrow_{\mathsf{UNT}} \ (P, N, I\ell, M) \quad \text{if} \quad \{\ell\} \in N|_I \ \text{and} \ \operatorname{var}(\ell) \in T \ \text{and} \ \emptyset \not\in P|_I \ \text{and} \ \operatorname{units}(P|_I) = \emptyset$

FP: $(P \land C^r, N, I, M) \rightsquigarrow_{\mathsf{FP}} (P, N, I, M)$ if $\emptyset \notin P|_I$

Our Dual Approach Facilitates the Detection of Partial Models

```
$ cat clause.form
p | q | r | s
$ dualiza -e -r p,r,s clause.form
ALL SATISFYING ASSIGNMENTS
s
r !s
!r !s
$ dualiza -r p,r,s clause.form
NUMBER SATISFYING ASSIGNMENTS
8
```

\$ dualiza -r p,r,s clause.form -1 | grep RULE c LOG 1 RULE UNX 1 -4 c LOG 1 RULE UNX 2 -4 c LOG 1 RULE BNOF 1 -4 c LOG 2 RULE UNX 3 -3 c LOG 2 RULE BNOF 2 -3 c LOG 3 RULE UNY 1 -2 c LOG 3 RULE ENO 1

Can We Compete with State-of-the-Art #SAT Solvers?

\$ cat clause4.form
(x1 | x2 | x3 | x4)

Can We Compete with State-of-the-Art #SAT Solvers?

\$ cat clause4.form
(x1 | x2 | x3 | x4)

n	Mode	sharpSAT [s]	DUALIZA [s]
	dual	$< 1 \cdot 10^{-2}$	$< 1 \cdot 10^{-2}$
10	block	$< 1 \cdot 10^{-2}$	$2 \cdot 10^{-2}$
	flip	$< 1 \cdot 10^{-2}$	$< 1 \cdot 10^{-2}$
20	block	$1 \cdot 10^{-2}$	$9 \cdot 10^{-1}$
20	flip	$1 \cdot 10^{-2}$	$2 \cdot 10^{-1}$
30	block	$1 \cdot 10^{-2}$	$4 \cdot 10^4$
50	flip	$1 \cdot 10^{-2}$	$2 \cdot 10^2$
100	dual	$< 1 \cdot 10^{-2}$	$< 1 \cdot 10^{-2}$
1000	dual	$8 \cdot 10^{-2}$	$2 \cdot 10^{-2}$
10000	dual	$1 \cdot 10^{1}$	$2 \cdot 10^{-1}$

Where Our Dual Approach Really Wins

\$ cat nrp4.form (x1 | x2 | x3 | x4) | (x5 = x2 ^ x3 ^ x4) | (x6 = x1 ^ x3 ^ x4) | (x7 = x1 ^ x2 ^ x4) | (x8 = x1 ^ x2 ^ x3)

Where Our Dual Approach Really Wins

\$	Са	at	nrp	54	.for	cm		
()	τ1		x2		xЗ		x4)	
(2	ς5	=	x2	^	xЗ	^	x4)	
()	6۵	=	x1	^	xЗ	^	x4)	
()	κ7	=	x1	^	x2	^	x4)	
()	82	=	x1	^	x2	^	x3)	

n	Method	sharpSAT [s]	DUALIZA [s]
10	dual	$9 \cdot 10^{-2}$	$< 1 \cdot 10^{-2}$
20	dual	$7 \cdot 10^2$	$1 \cdot 10^{-2}$
21	dual	$2 \cdot 10^3$	$1 \cdot 10^{-2}$
22	dual	*	$1 \cdot 10^{-2}$
100	dual	*	$8 \cdot 10^{-2}$
1000	dual	*	$1 \cdot 10^1$
5000	dual	*	$2 \cdot 10^2$

Outline

State of the Art in Exact Model Counting

Challenges and Solutions

Solution 1: Dualizing Projected Model Counting

Solution 2: Combining Conflict-Driven Clause Learning and Chronological Backtracking

Solution 3: Exploiting Logical Entailment

Conclusion and Future Work

The Main Idea

$$F = (\bar{p} \lor q) \land (p \lor q) \longrightarrow M = (r \land q) \lor (\bar{r} \land p \land q) \lor (\bar{r} \land \bar{p} \land q) = C_1 \lor C_2 \lor C_3$$

Rules
$$M \equiv F \text{ and } \#M = \sum_{i=1}^3 2^{|V-C_i|} = 4 = \#F$$

Generalizing,

 $\#F = \sum_{C \in M} 2^{|V-C|}$

and

M is a Disjoint-Sum-of-Products (DSOP) representation of F

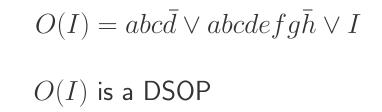
- M is a disjunction of conjunctions of literals (cubes)
- \blacksquare The cubes in M are pairwise contradicting
- $\blacksquare \ M$ is logically equivalent to F
- $\blacksquare~M$ is not unique

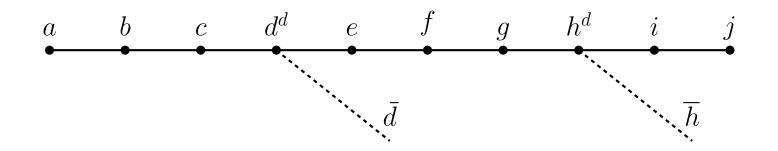
The Main Idea

Assignment Trail I

 $I = abcd^d e fgh^d i j$ $a \quad b \quad c \quad d^d \quad e \quad f \quad g \quad h^d \quad i \quad j$

Pending Search Space O(I)





Pending Models of $F = F \land O(I)$

Models of F found M

The Main Idea

During execution, we have that

$$O(I) \wedge F \vee M \equiv F \qquad \text{and} \qquad \#F = \#(F \wedge O(I)) + \sum_{C \in M} 2^{|V-C|}$$

Upon termination, we have ${\cal O}(I)=\bot$, hence

$$M \equiv F \qquad \qquad \text{and} \qquad \qquad \#F = \sum_{C \in M} 2^{|V-C|}$$

Calculus

EndTrue:	$(F, I, M, \delta) \sim_{EndTrue} M \lor I$ if $F _{I} = \top$ and decs $(I) = \emptyset$
EndFalse:	$(F, I, M, \delta) \sim_{EndFalse} M$ if exists $C \in F$ and $C _I = \bot$ and $\delta(C) = 0$
Unit:	$(F, I, M, \delta) \rightsquigarrow_{\text{Unit}} (F, I\ell, M, \delta[\ell \mapsto a]) \text{ if } F _I \neq \top \text{ and } \perp \notin F _I \text{ and } exists C \in F \text{ with } \{\ell\} = C _I \text{ and } a = \delta(C \setminus \{\ell\})$
BackTrue:	$(F, I, M, \delta) \sim_{BackTrue} (F, PK\ell, M \lor I, \delta[L \mapsto \infty][\ell \mapsto e])$ if $F _I = \top$ and $PQ = I$ and $D = \overline{decs(I)}$ and $e + 1 = \delta(D) = \delta(I)$ and $\ell \in D$ and $e = \delta(D \setminus \{\ell\}) = \delta(P)$ and $K = Q_{\leq e}$ and $L = Q_{>e}$
	$(F, I, M, \delta) \sim_{\text{BackFalse}} (F, PK\ell, M, \delta[L \mapsto \infty][\ell \mapsto j])$ if exists $C \in F$ and exists D with $PQ = I$ and $C _I = \bot$ and $c = \delta(C) = \delta(D) > 0$ such that $\ell \in D$ and $\overline{\ell} \in \text{decs}(I)$ and $\ell _Q = \bot$ and $F \wedge \overline{M} \models D$ and $j = \delta(D \setminus \{\ell\})$ and $b = \delta(P) = c - 1$ and $K = Q_{\leq b}$ and $L = Q_{>b}$
Decide:	$(F, I, M, \delta) \rightsquigarrow_{\text{Decide}} (F, I\ell^d, M, \delta[\ell \mapsto d]) \text{ if } F _I \neq \top \text{ and } \perp \notin F _I \text{ and } units(F _I) = \emptyset \text{ and } V(\ell) \in V \text{ and } \delta(\ell) = \infty \text{ and } d = \delta(I) + 1$

Outline

State of the Art in Exact Model Counting

Challenges and Solutions

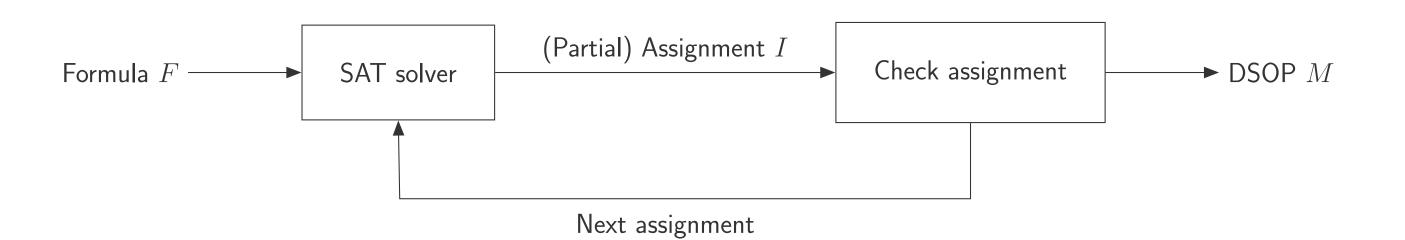
Solution 1: Dualizing Projected Model Counting

Solution 2: Combining Conflict-Driven Clause Learning and Chronological Backtracking

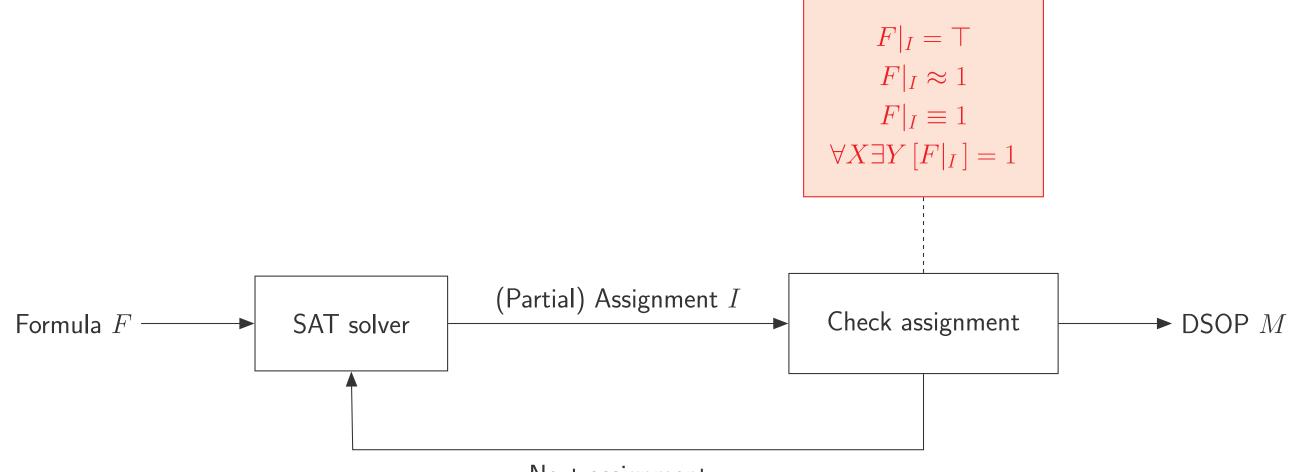
Solution 3: Exploiting Logical Entailment

Conclusion and Future Work

Main Idea



Our Contribution



Next assignment

Given

- $F \quad \text{ formula over variables in } X \cup Y$
- $I \qquad {\rm trail \ over \ variables \ in \ } X \cup Y$

Given

- $F \quad \text{ formula over variables in } X \cup Y$
- $I \qquad {\rm trail \ over \ variables \ in \ } X \cup Y$

Quantified entailment condition

- In $\varphi = \forall X \forall Y [F|_I]$ the unassigned variables in $X \cup Y$ are quantified
- $\blacksquare \ \varphi = 1:$ all possible total extensions of I satisfy F

Given

- F formula over variables in $X \cup Y$
- $I \qquad {\rm trail \ over \ variables \ in \ } X \cup Y$

Quantified entailment condition

- In $\varphi = \forall X \forall Y [F|_I]$ the unassigned variables in $X \cup Y$ are quantified
- $\blacksquare \ \varphi = 1:$ all possible total extensions of I satisfy F

Entailment under projection onto the set of variables \boldsymbol{X}

• Does for each J_X exist one J_Y such that $F|_{I'} = \top$ where $I' = I \cup J_X \cup J_Y$?

Given

- F formula over variables in $X \cup Y$
- $I \qquad {\rm trail \ over \ variables \ in \ } X \cup Y$

Quantified entailment condition

- In $\varphi = \forall X \forall Y [F|_I]$ the unassigned variables in $X \cup Y$ are quantified
- $\blacksquare \ \varphi = 1:$ all possible total extensions of I satisfy F

Entailment under projection onto the set of variables \boldsymbol{X}

• Does for each J_X exist one J_Y such that $F|_{I'} = \top$ where $I' = I \cup J_X \cup J_Y$?

 $QBF(\varphi) = \top$ where $\varphi = \forall X \exists Y [F|_I] = \top$?

1) $F|_I = \top$ (syntactic check)

$$F = (x_1 \lor y \lor x_2) \qquad X = \{x_1, x_2\} \qquad Y = \{y\}$$
$$I = x_1: \qquad F|_I = \top \implies I \models F$$

1) $F|_I = \top$ (syntactic check)

2) $F|_I \approx 1$ (incomplete check in **P**)

$$F = x_1 y \lor \bar{y} x_2 \qquad X = \{x_1, x_2\} \qquad Y = \{y\}$$
$$I = x_1 x_2: \qquad F|_I = y \lor \bar{y} \neq \top \quad \text{but is valid}$$
$$I = x_1 x_2 \bar{y}: \qquad \bot \in BCP(\overline{F}, I) \implies \quad x_1 x_2 \models F$$

- 1) $F|_{I} = \top$ (syntactic check)
- 2) $F|_I \approx 1$ (incomplete check in P)
- 3) $F|_I \equiv 1$ (semantic check in **coNP**)

$$F = x_1(\bar{x}_2 \, \bar{y} \lor \bar{x}_2 y \lor x_2 \bar{y} \lor x_2 y) \qquad X = \{x_1, x_2\} \qquad Y = \{y\}$$

$$I = x_1: \qquad I(F) = \bar{x}_2 \, \bar{y} \lor \bar{x}_2 y \lor x_2 \bar{y} \lor x_2 y \neq \top \quad \text{but is valid}$$

$$P = \mathsf{CNF}(F)$$

$$N = \mathsf{CNF}(\bar{F}):$$

$$P|_I \text{ and } N|_I \text{ are non-constant and contain no units}$$

 $N|_{I} = (x_{2} \lor y)(x_{2} \lor \bar{y})(\bar{x_{2}} \lor y)(\bar{x_{2}} \lor \bar{y}): \quad SAT(N \land I) = \bot \quad \Longrightarrow \quad I \models F$

1) $F|_{I} = \top$ (syntactic check)

2) $F|_I \approx 1$ (incomplete check in **P**)

3) $F|_I \equiv 1$ (semantic check in **coNP**)

4) $\forall X \exists Y [F|_I] = 1$ (check in Π_2^P)

 $F = x_1(x_2 \leftrightarrow y_2)$ $X = \{x_1, x_2\}$ $Y = \{y_2\}$

 $P = \mathsf{CNF}(F)$ and $N = \mathsf{CNF}(\overline{F})$:

 $P = (x_1)(s_1 \lor s_2)(\bar{s_1} \lor x_2)(\bar{s_1} \lor y_2)(\bar{s_2} \lor \bar{x_2})(\bar{s_2} \lor \bar{y_2}) \quad \text{where} \quad S = \{s_1, s_2\}$ $N = (\bar{x_1} \lor t_1 \lor t_2)(\bar{t_1} \lor x_2)(\bar{t_1} \lor \bar{y_2})(\bar{t_2} \lor \bar{x_2})(\bar{t_2} \lor y_2) \quad \text{where} \quad T = \{t_1, t_2\}$ $I = x_1: \qquad P|_I \text{ and } N|_I \text{ are non-constant and contain no units}$ $I = x_1 \bar{t_2} t_1 \bar{y_2}: \qquad N|_I = \top$ $\varphi = \forall X \exists Y [x_2 y_2 \lor \bar{x_2} \bar{y_2}]: \qquad QBF(\varphi) = \top \implies x_1 \models F$

Algorithm

Input: formula F(X, Y) over variables $X \cup Y$ such that $X \cap Y = \emptyset$, trail I, decision level function δ **Output:** DNF M consisting of models of F projected onto X

Enumerate (F) 1 $I := \varepsilon; \delta := \infty; M := \bot$ 2 forever do $C := PropagateUnits(F, I, \delta)$ 3 if $C \neq \bot$ then 4 5 $c := \delta(C)$ if c = 0 then return M 6 AnalyzeConflict (F, I, C, c)7 else if all variables in $X \cup Y$ are assigned then 8 if $V(\operatorname{decs}(I)) \cap X = \emptyset$ then return $M \vee \pi(I, X)$ 9 $M := M \lor \pi(I, X)$ 10 $b := \delta(\mathsf{decs}(\pi(I, X)))$ 11 Backtrack (I, b-1) 12 else if Entails(I, F) then 13 if $V(\operatorname{decs}(I)) \cap X = \emptyset$ then return $M \vee \pi(I, X)$ 14 $M := M \vee \pi(I, X)$ 14 $b := \delta(\mathsf{decs}(\pi(I, X)))$ 15 Backtrack(I, b-1) 16 else Decide (I, δ) 17

EndTrue:	$(F, I, M, \delta) \rightsquigarrow_{EndTrue} M \lor m \text{ if } V(decs(I)) \cap X = \emptyset \text{ and}$ $m \stackrel{\text{def}}{=} \pi(I, X) \text{ and } \forall X \exists Y [F _I] = 1$
EndFalse:	$(F, I, M, \delta) \sim_{EndFalse} M$ if exists $C \in F$ and $C _I = 0$ and $\delta(C) = 0$
Unit:	$(F, I, M, \delta) \sim_{\text{Unit}} (F, I\ell, M, \delta[\ell \mapsto a]) \text{ if } F _I \neq 0 \text{ and}$ exists $C \in F$ with $\{\ell\} = C _I$ and $a \stackrel{\text{def}}{=} \delta(C \setminus \{\ell\})$
BackTrue:	$(F, I, M, \delta) \sim_{BackTrue} (F, UK\ell, M \lor m, \delta[L \mapsto \infty][\ell \mapsto b])$ if $UV \stackrel{\text{def}}{=} I$ and $D \stackrel{\text{def}}{=} \overline{\pi(decs(I), X)}$ and $b + 1 \stackrel{\text{def}}{=} \delta(D) \leqslant \delta(I)$ and $\ell \in D$ and $b = \delta(D \setminus \{\ell\}) = \delta(U)$ and $m \stackrel{\text{def}}{=} \pi(I, X)$ and $K \stackrel{\text{def}}{=} V_{\leqslant b}$ and $L \stackrel{\text{def}}{=} V_{>b}$ and $\forall X \exists Y [F _I] = 1$
BackFalse	$ (F, I, M, \delta) \sim_{BackFalse} (F, UK\ell, M, \delta[L \mapsto \infty][\ell \mapsto j]) \text{ if} $ exists $C \in F$ and exists D with $UV \stackrel{\text{def}}{=} I$ and $C _I = 0$ and $c \stackrel{\text{def}}{=} \delta(C) = \delta(D) > 0$ such that $\ell \in D$ and $\bar{\ell} \in decs(I)$ and $\bar{\ell} _V = 0$ and $F \wedge \overline{M} \models D$ and $j \stackrel{\text{def}}{=} \delta(D \setminus \{\ell\})$ and $b \stackrel{\text{def}}{=} \delta(U) = c - 1$ and $K \stackrel{\text{def}}{=} V_{\leqslant b}$ and $L \stackrel{\text{def}}{=} V_{>b}$
DecideX:	$(F, I, M, \delta) \sim_{DecideX} (F, I\ell^d, M, \delta[\ell \mapsto d]) \text{ if } F _I \neq 0 \text{ and}$ units $(F _I) = \emptyset$ and $\delta(\ell) = \infty$ and $d \stackrel{\text{def}}{=} \delta(I) + 1$ and $V(\ell) \in X$
DecideY:	$(F, I, M, \delta) \sim_{DecideY} (F, I\ell^d, M, \delta[\ell \mapsto d]) \text{ if } F _I \neq 0 \text{ and}$ units $(F _I) = \emptyset$ and $\delta(\ell) = \infty$ and $d \stackrel{\text{def}}{=} \delta(I) + 1$ and $V(\ell) \in Y$ and $X - I = \emptyset$

Outline

State of the Art in Exact Model Counting

Challenges and Solutions

Solution 1: Dualizing Projected Model Counting

Solution 2: Combining Conflict-Driven Clause Learning and Chronological Backtracking

Solution 3: Exploiting Logical Entailment

Conclusion and Future Work

Conclusion

Our Contribution

First dual Calculus for exact projected model counting

- Search space pruning
- Good learning

Chronological CDCL for model counting

- Formal calculus and proof
- No exponential learning

Early Pruning

- Compute partial assignments entailing the formula on-the-fly
- Entailment tests in four flavors of different strength

Conclusion

Our Contribution

First dual Calculus for exact projected model counting

- Search space pruning
- Good learning

Chronological CDCL for model counting

- Formal calculus and proof
- No exponential learning

Early Pruning

- Compute partial assignments entailing the formula on-the-fly
- Entailment tests in four flavors of different strength

Future Work

- Implement and validate our method exploiting logical entailment
- Target weighted model integration and model counting with or without projection
- Investigate methods concerning the implementation of QBF oracles for exploiting logical entailment
- Combine with decomposition-based approaches and generate d-DNNF

Chronological CDCL¹¹

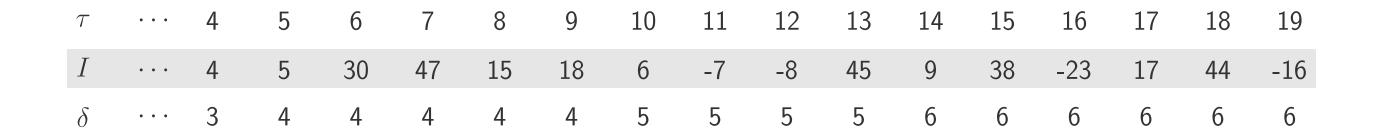
¹¹ S. Möhle, A. Biere, "Backing Backtracking", SAT'19.

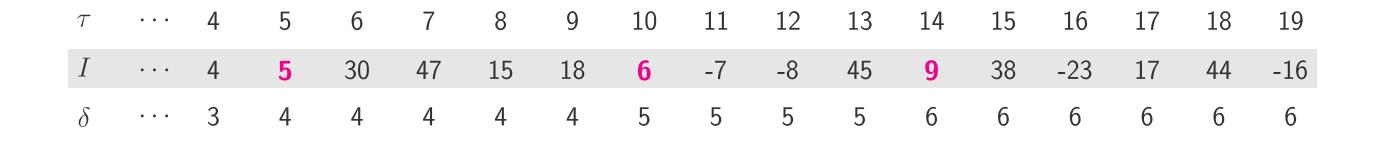
CDCL Invariants

Trail:	The assignment trail contains neither complementary pairs of literals nor duplicates.
ConflictLower:	The assignment trail preceding the current decision level does not falsify the formula.
Propagation:	On every decision level preceding the current decision level all unit clauses are propagated until completion.
LevelOrder:	The literals are ordered on the assignment trail in ascending order with respect to their decision level.
ConflictingClause:	At decision levels greater than zero the conflicting clause contains at least two literals with the current decision level.

CDCL Invariants

Trail:	The assignment trail contains neither complementary pairs of literals nor duplicates.
ConflictLower:	The assignment trail preceding the current decision level does not falsify the formula.
Propagation:	On every decision level preceding the current decision level all unit clauses are propagated until completion.
LevelOrder:	The literals are ordered on the assignment trail in ascending order with respect to their decision level.
ConflictingClause:	At decision levels greater than zero the conflicting clause contains at least two literals with the current decision level.

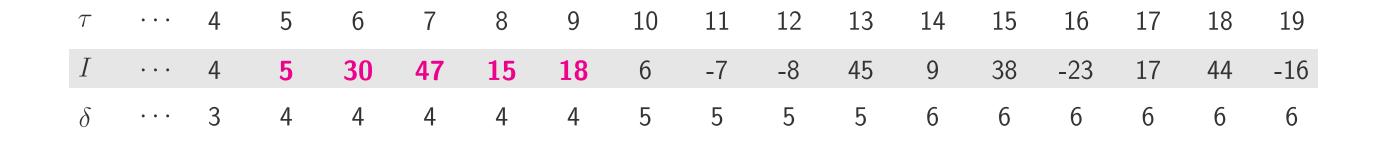




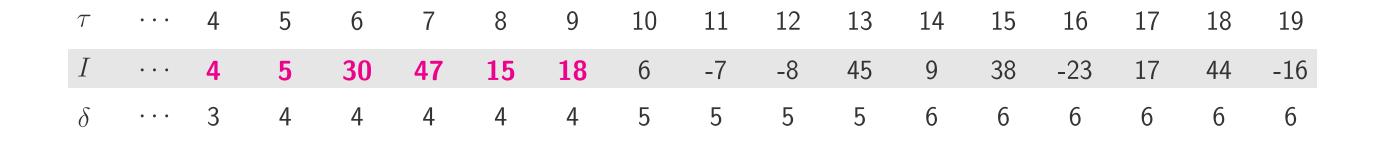
decision literal

au	• • •	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Ι	• • •	4	5	30	47	15	18	6	-7	-8	45	9	38	-23	17	44	-16
δ	• • •	3	4	4	4	4	4	5	5	5	5	6	6	6	6	6	6

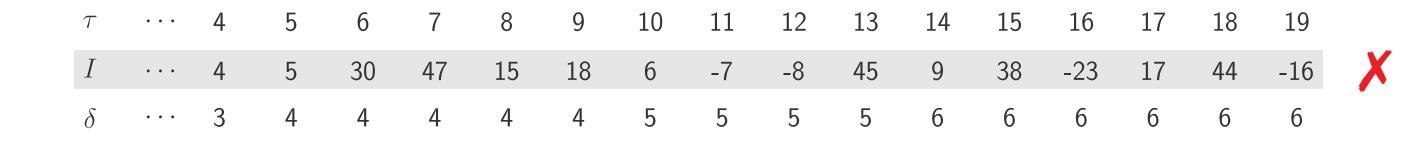
 $\mathsf{block}(I,4)$



slice(I,4)



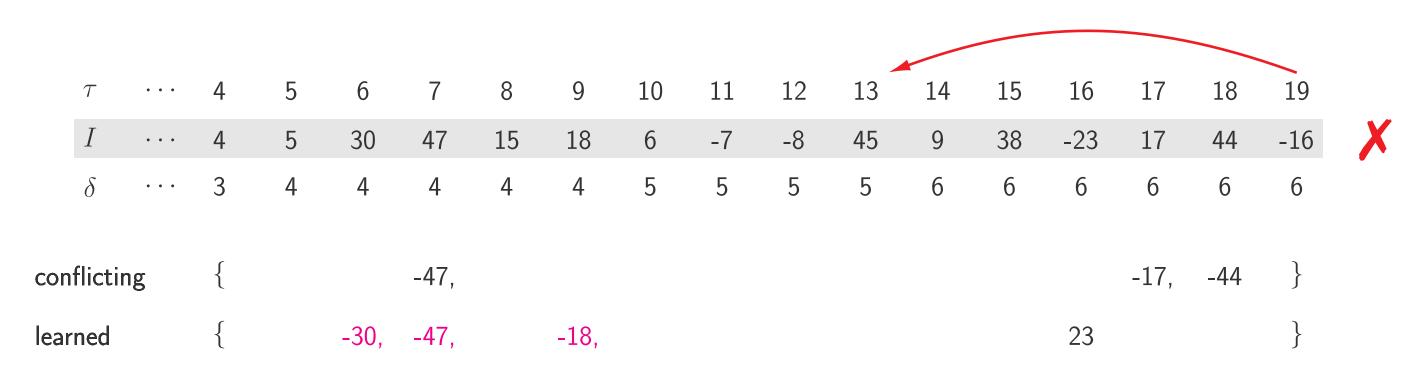
 $I_{\leqslant 4}$



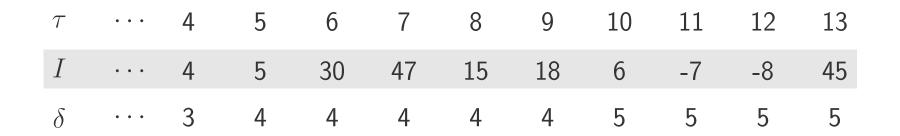


	au	• • •	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
	Ι	• • •	4	5	30	47	15	18	6	-7	-8	45	9	38	-23	17	44	-16	X
	δ	•••	3	4	4	4	4	4	5	5	5	5	6	6	6	6	6	6	-
conf	flictin	g	{			-47,										-17,	-44	}	
learı	ned		{		-30,	-47,		-18,							23			}	

jump level 4



backtrack level 5



au	• • •	4	5	6	7	8	9	10	11	12	13	
Ι	• • •	4	5	30	47	15	18	6	-7	-8	45	
δ	• • •	3	4	4	4	4	4	5	5	5	5	
au	• • •	4	5	6	7	8	9	10	11	12	13	14
Ι	• • •	4	5	30	47	15	18	6	-7	-8	45	23
δ	• • •	3	4	4	4	4	4	5	5	5	5	4

out of order

au	• • •	4	5	6	7	8	9	10	11	12	13	
Ι	• • •	4	5	30	47	15	18	6	-7	-8	45	
δ	• • •	3	4	4	4	4	4	5	5	5	5	
			1 -	_	_		_					
				6								
Ι	• • •	4	5	30	47	15	18	6	-7	-8	45	23
δ	• • •	3	4	4	4	4	4	5	5	5	5	4

 $\mathsf{block}(I,4)$

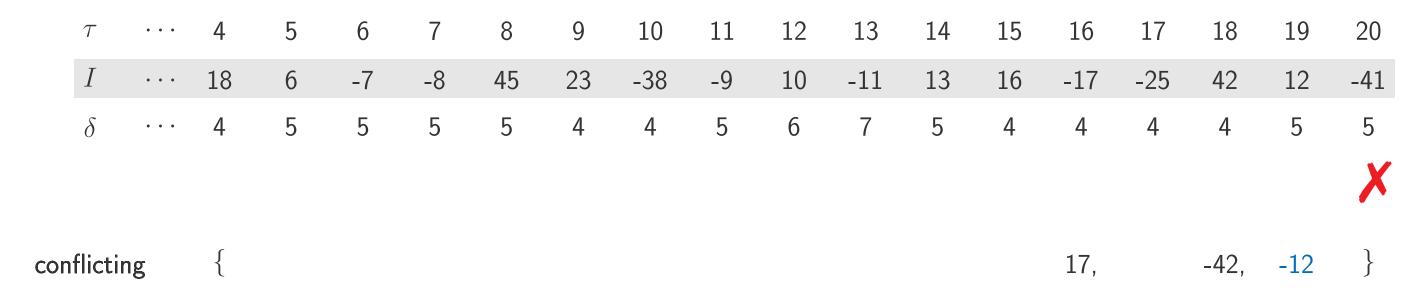
au	• • •	4	5	6	7	8	9	10	11	12	13	
Ι	• • •	4	5	30	47	15	18	6	-7	-8	45	
δ	• • •	3	4	4	4	4	4	5	5	5	5	
au	• • •	4	5	6	7	8	9	10	11	12	13	14
Ι	• • •	4	5	30	47	15	18	6	-7	-8	45	23
δ	• • •	3	4	4	4	4	4	5	5	5	5	4

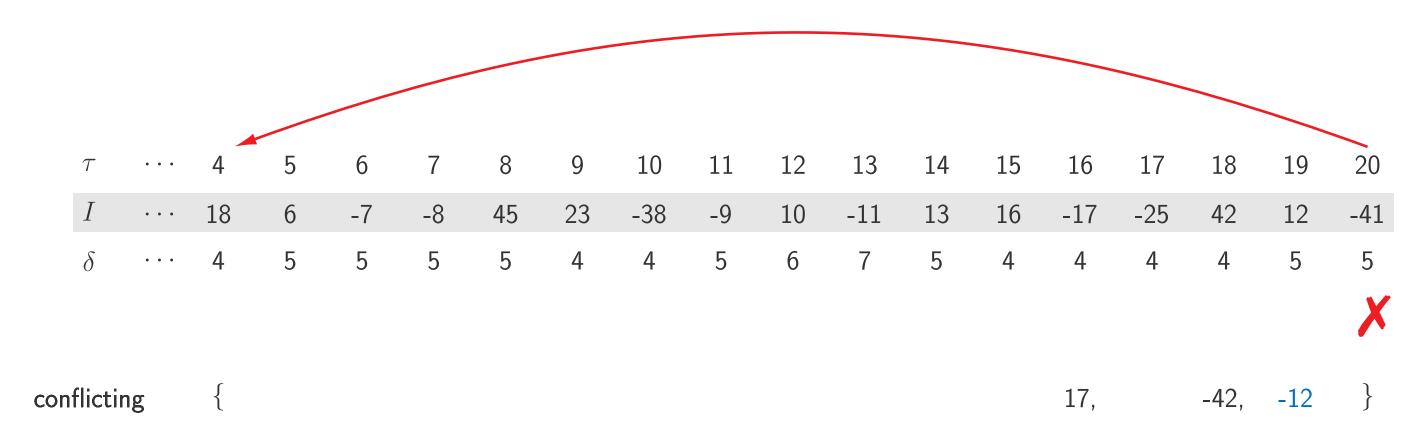
slice(I,4)

au	• • •	4	5	6	7	8	9	10	11	12	13	
Ι	• • •	4	5	30	47	15	18	6	-7	-8	45	
δ	• • •	3	4	4	4	4	4	5	5	5	5	
au	•••	4	5	6	7	8	9	10	11	12	13	14
Ι	• • •	4	5	30	47	15	18	6	-7	-8	45	23
δ	• • •	3	4	4	4	4	4	5	5	5	5	4

 $I_{\leqslant 4}$

au	• • •	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ι	• • •	18	6	-7	-8	45	23	-38	-9	10	-11	13	16	-17	-25	42	12	-41
δ	• • •	4	5	5	5	5	4	4	5	6	7	5	4	4	4	4	5	5





backtrack level 4

au	• • •	4	5	6	7	8	9	10	11
Ι	• • •	18	23	-38	16	-17	-25	42	-12
δ	• • •	4	4	4	4	4	4	4	4

True: $(F, I, \delta) \rightsquigarrow_{\mathsf{True}} \mathsf{SAT}$ if $F|_I = \top$

False: $(F, I, \delta) \rightsquigarrow_{\mathsf{False}} \mathsf{UNSAT}$ if exists $C \in F$ with $C|_I = \bot$ and $\delta(C) = 0$

Unit:
$$(F, I, \delta) \rightsquigarrow_{\text{Unit}} (F, I\ell, \delta[\ell \mapsto a])$$
 if $F|_I \neq \top$ and $\perp \notin F|_I$ and
exists $C \in F$ with $\{\ell\} = C|_I$ and $a = \delta(C \setminus \{\ell\})$

Decide: $(F, I, \delta) \rightsquigarrow_{\text{Decide}} (F, I\ell, \delta[\ell \mapsto d])$ if $F|_I \neq \top$ and $\bot \notin F|_I$ and $\text{units}(F|_I) = \emptyset$ and $V(\ell) \in V$ and $\delta(\ell) = \infty$ and $d = \delta(I) + 1$

True: $(F, I, \delta) \rightsquigarrow_{\mathsf{True}} \mathsf{SAT}$ if $F|_I = \top$

False: $(F, I, \delta) \rightsquigarrow_{\mathsf{False}} \mathsf{UNSAT}$ if exists $C \in F$ with $C|_I = \bot$ and $\delta(C) = 0$

Unit:
$$(F, I, \delta) \rightsquigarrow_{\text{Unit}} (F, I\ell, \delta[\ell \mapsto a])$$
 if $F|_I \neq \top$ and $\perp \notin F|_I$ and
exists $C \in F$ with $\{\ell\} = C|_I$ and $a = \delta(C \setminus \{\ell\})$

Decide: $(F, I, \delta) \rightsquigarrow_{\text{Decide}} (F, I\ell, \delta[\ell \mapsto d])$ if $F|_I \neq \top$ and $\bot \notin F|_I$ and $\text{units}(F|_I) = \emptyset$ and $V(\ell) \in V$ and $\delta(\ell) = \infty$ and $d = \delta(I) + 1$

True: $(F, I, \delta) \rightsquigarrow_{\mathsf{True}} \mathsf{SAT}$ if $F|_I = \top$

False: $(F, I, \delta) \rightsquigarrow_{\mathsf{False}} \mathsf{UNSAT}$ if exists $C \in F$ with $C|_I = \bot$ and $\delta(C) = 0$

Unit:
$$(F, I, \delta) \rightsquigarrow_{\text{Unit}} (F, I\ell, \delta[\ell \mapsto a])$$
 if $F|_I \neq \top$ and $\perp \notin F|_I$ and
exists $C \in F$ with $\{\ell\} = C|_I$ and $a = \delta(C \setminus \{\ell\})$

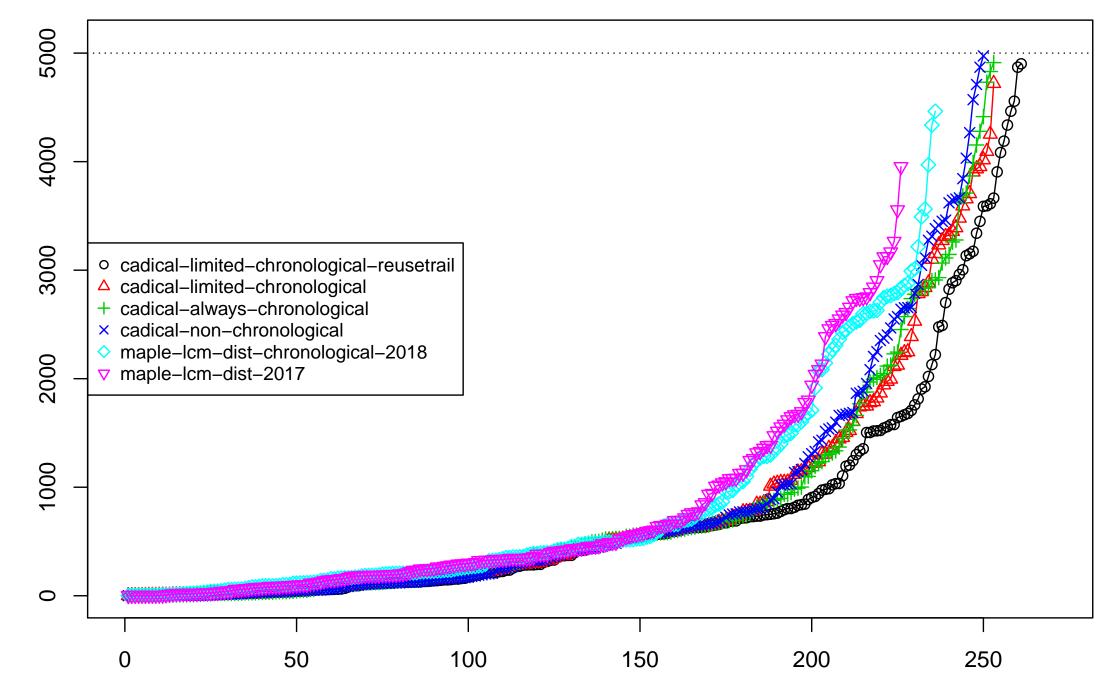
Jump:
$$(F, I, \delta) \rightsquigarrow_{\mathsf{Jump}} (F \land D, PK\ell, \delta[L \mapsto \infty][\ell \mapsto j])$$
 if exists $C \in F$ with $PQ = I$ and $C|_I = \bot$ such that $c = \delta(C) = \delta(D) > 0$ and $\ell \in D$ and $\ell|_Q = \bot$ and $F \models D$ and $j = \delta(D \setminus \{\ell\})$ and $b = \delta(P)$ and $b = j$ and $K = Q_{\leq b}$ and $L = Q_{>b}$

Decide: $(F, I, \delta) \rightsquigarrow_{\text{Decide}} (F, I\ell, \delta[\ell \mapsto d])$ if $F|_I \neq \top$ and $\bot \notin F|_I$ and $\text{units}(F|_I) = \emptyset$ and $V(\ell) \in V$ and $\delta(\ell) = \infty$ and $d = \delta(I) + 1$

Invariants

Trail:	The assignment trail contains neither complementary pairs of literals nor duplicates.
ConflictLower:	The assignment trail preceding the current decision level does not falsify the formula.
(1):	$\forall k,\ell \in decs(I) \ . \ \tau(I,k) < \tau(I,\ell) \implies \delta(k) < \delta(\ell)$
(2):	$\delta(decs(I)) = \{1, \dots, \delta(I)\}$
(3):	$\forall n \in \mathbb{N} \ . \ F \wedge decs_{\leqslant n}(I) \models I_{\leqslant n}$

Experiments — Main Track of SAT Competition 2018



Experiments

solver configurations	solved instances		
	total	SAT	UNSAT
cadical-limited-chronological-reusetrail	261	155	106
cadical-limited-chronological	253	147	106
cadical-always-chronological	253	148	105
cadical-non-chronological	250	144	106
maple-lcm-dist-chronological-2018	236	134	102
maple-lcm-dist-2017	226	126	100