An Abstract CNF-to-d-DNNF Compiler Based on
Chronological CDCL

Sibylle Mohle [0000—0001—7883—7749]

Max Planck Institute for Informatics,
Saarland Informatics Campus E1 4, 66123 Saarbriicken, Germany
smoehle@mpi-inf.mpg.de

Abstract. We present ABSTRACT CNF2DDNNF, a calculus describ-
ing an approach for compiling a formula in conjunctive normal form (CNF)
into deterministic negation normal form (d-DNNF). It combines com-
ponent-based reasoning with a model enumeration approach based on
conflict-driven clause learning (CDCL) with chronological backtracking.
Its properties, such as soundness and termination, carry over to imple-
mentations which can be modeled by means of it. We provide a rigorous
correctness proof and a detailed example. The main conceptual differ-
ences to currently available tools targeting d-DNNFs are discussed and
future research directions presented. The aim of this work is to introduce
a novel method for d-DNNF compilation with focus on model computa-
tion. To the best of our knowledge, our approach is the first knowledge
compilation method using CDCL with chronological backtracking.

Keywords: Knowledge compilation - d-DNNF - Chronological CDCL

1 Introduction

In real-world applications, constraints may be modeled in conjunctive normal
form (CNF), but many tasks relevant in AI and reasoning, such as checks for
consistency, validity, clausal entailment, and implicants, can not be executed effi-
ciently on them [9]. Tackling these and other computationally expensive problems
is the aim of the knowledge compilation paradigm [13]. The idea is to translate
a formula into a language in which the task of interest can be executed effi-
ciently [22]. The knowledge compilation map [22] contains an in-depth discussion
of such languages and their properties, and other (families of) languages have
been introduced since its publication [21,25,29]. The focus in this work is on the
language deterministic decomposable negation normal form (d-DNNF) [19]. It
has been applied in planning [2,39], Bayesian reasoning [15], diagnosis [3,43], and
machine learning [28] as well as in functional E-MAJSAT [40], to mention a few,
and was also studied from a theoretical perspective [7,8,10]. Several d-DNNF
compilers are available [20,30,37,48], as well as a d-DNNF reasoner’.
Translating a formula from CNF to d-DNNF requires to process the search
space exhaustively. The number of variable assignments which need to be checked

! http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html

http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html

2 S. Mdhle

is exponential in the number of variables occurring in the formula and testing
them one by one is out of question from a computational complexity point of view.
However, if the formula can be partitioned into subformulae defined over pairwise
disjoint sets of variables, these subformulae can be processed independently and
the results combined [4]. This may significantly reduce the amount of work per
computation. Consider F' = (a V b) A (¢ V d) defined over the set of variables
V = {a,b,c,d}. Its search space consists of 2¢ = 16 variable assignments. The
formula F' can be partitioned into Fy = (a V b) and Fy = (¢ V d) defined over
the sets of variables V3 = {a,b} and Va2 = {c,d}, respectively, and such that
F = F; ANFy. Due to V1NV, =), we can compute d-DNNF representations of Iy
and F5 independently and conjoin them obtaining a d-DNNF representation of F'.
Moreover, in each computation we only need to check 22 = 4 assignments. The
subformulae F; and F5 are called components due to the original motivation
originating in graph theory, and the partitioning process is referred to as de-
composition or component analysis. This approach, also called component-based
reasoning, is realized in various exact #SAT solvers [1,4,11,12,41,42,47], and its
success suggests that formulae stemming from real-world applications decompose
well enough to generate a substantial amount of work saving.

The formula F' in our example satisfies decomposability [22], i.e., for each
conjunction, the conjuncts are defined over pairwise disjoint sets of variables. We
call such a formula decomposable. Negations occur only in front of literals, hence
it is in decomposable negation normal form (DNNF) [17,18]. A formula in which
for each disjunction the disjuncts are pairwise contradicting, satisfies determin-
ism [22], and a deterministic DNNF formula is in d-DNNF. Determinism is also
met by the language disjoint sum-of-products (DSOP), which is a disjunction of
pairwise contradicting conjunctions of literals, and which is relevant in circuit
design [5]. In previous work [34], an approach for translating a CNF formula
into DSOP based on CDCL with chronological backtracking has been introduced.
The reason for using chronological backtracking is twofold. First, it has shown
not to significantly harm solver performance [33,38]. Second, pairwise disjoint
models are detected without the use of blocking clauses commonly used in model
enumeration. They rule out already found models but also slow down the solver.
Enhancing this approach by component-based reasoning enables us to compute
a d-DNNF representation of a CNF formula. Reconsider our previous example,
and suppose we obtained dsop(F}) = a V (—a A b) and dsop(F3) = ¢V (—¢ A d).
Now F' = Fy A Fy, hence F' = dsop(Fy) Adsop(Fz) = (aV (maAb))A(cV (meAd)),
which is in d-DNNF.

Our contributions. We present ABSTRACT CNF2DDNNF, ACD for short,
a declarative formal framework describing the compilation of CNF into d-DNNF
and a rigorous proof of its correctness. This abstract presentation allows for a
thorough understanding of our method at a conceptual level and of its correct-
ness. If our framework is sound, every implementation which can be modeled
by its means is sound as well. This comprises optimizations and implementation
details, such as caches. ABSTRACT CNF2DDNNF combines component-based
reasoning and CNF-to-DSOP compilation based on conflict-driven clause learn-

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 3

ing (CDCL) with chronological backtracking. Disjunctions with contradicting
disjuncts are introduced by decisions and subsequently flipping their value upon
backtracking, while conjunctions whose conjuncts share no variable are intro-
duced by unit propagation and decomposition.

2 Preliminaries

Let V be a set of propositional variables defined over the set of Boolean con-
stants L (false) and T (true) denoted by B = {L, T}. A literal is either a variable
v € V or its negation —w. We refer to the variable of a literal £ by var(¢) and extend
this notation to sets and sequences of literals and formulae. We consider formulae
in conjunctive normal form (CNF) which are conjunctions of clauses which are
disjunctions of literals. A formula in disjoint-sum-of-products (DSOP) is a dis-
junction of pairwise contradicting cubes, which are conjunctions of literals. Our
target language is deterministic decomposable negation normal form (d-DNNF),
whose formulae are built of literals, conjunctions sharing no variables, and disjunc-
tions whose disjuncts are pairwise contradicting. We might interpret formulae
as sets of clauses and cubes and clauses as sets of literals and write C' € F' and
¢ € C to refer to a clause C' in a formula F' and a literal ¢ contained in a clause or
cube C, respectively. The empty CNF formula and the empty cube are denoted
by T and the empty DSOP formula and the empty clause by L.

A total variable assignment is a mapping o: V +— B, and a trail I = ¢, ... 4,
is a non-contradictory sequence of literals which might also be interpreted as
a (possibly partial) assignment, such that I(¢) = T iff £ € I. Similarly, I(C)
and I(F) are defined. We might interpret a trail I as a set of literals by writing
¢ € I to refer to the literal £ on I. The empty trail is denoted by € and the set of
variables of the literals on I by var(I). Trails and literals can be concatenated,
written IJ and I/, given var(I)Nvar(J) = 0 and var(I) Nvar(¢) = (). The position
of £ on the trail I is denoted by 7(I,¢). The decision literals on I are annotated
by a superscript, e.g., #¢, denoting open “left” branches in the sense of the Davis-
Putnam-Logemann-Loveland (DPLL) algorithm [23,24]. Flipping the value of a
decision literal can be seen as closing the corresponding left branch and starting
a “right” branch, where the decision literal £¢ becomes a flipped literal —¢.

The residual of F' under I, written F'|, is obtained by assigning the variables
in F' their truth value and by propagating truth values through Boolean connec-
tives. The notion of residual is extended to clauses and literals. A unit clause is
a clause {¢} containing one single literal £. By units(F') (units(F’|;)) we denote
the set of unit literals in F' (F|;). Similarly, decs(I) denotes the set of decision
literals on I. By writing ¢ € decs(I) (¢ € units(F'), ¢ € units(F|;), we refer to a
decision literal ¢ on I (unit literal in F, F|7). A trail I falsifies F, if I(F) = 1,
ie, F|r = L. It satisfies F, I E F,if [(F) =T, ie., F|; =T, and is then called
a model of F. If var(I) =V, I is a total model, otherwise it is a partial model.

The trail is partitioned into decision levels, starting with a decision literal and
extending until the literal preceding the next decision. The decision level function
0: V= NU{oo} returns the decision level of a variable v € V. If v is unassigned,

4 S. Mdhle

Algorithm 1: CNF2dDNNF(F,V I, M)

input :CNF F,V =var(F), I =¢,M = L
output:d-DNNF M = F
1 Loop

2 I «+ PropagateUnits()

3 if conflict occurs then

4 if conflict level = 0 then return M

5 else AnalyzeConflict()

6 elseif I(F) =T then

7 M—MVI

8 if there are no decisions on I then return M
9 else BacktrackChrono()
10 else if F|; can be decomposed into G and H then
11 M + MVIACNF2dDNNF(G,var(G),e,L) ACNF2dDNNF(H ,var(H), e, 1)
12 if there are no decisions on I then return M
13 else BacktrackChrono()
14 else Decide

0(v) = oo, and ¢ is updated whenever a variable is assigned or unassigned,
e.g., v — d] if v is assigned to decision level d. We define §(£) = d(var(¥)),
0(C) =max{d(¢) | £ € C} for C # L and §(I) = max{6(¢) | £ € I} for I # ¢
extending this notation to sets of literals. Finally, we define 6(L) = d(g) = oo.
By writing 0[] — oo, all literals on the trail I are unassigned. The decision level
function is left-associative, i.e., §[I — oo|[¢ — d] expresses that first all literals
on [are unassigned and then literal ¢ is assigned to decision level d.

Unlike in CDCL with non-chronological backtracking [44,45,36], in chrono-
logical CDCL [33,38] literals may not be ordered on the trail in ascending order
with respect to their decision level. We write I, (I<y, I=,) for the subsequence
of I containing all literals £ with §(¢) < n (6(¢) < n, §(¢) = n). The pending
search space of I is given by the assignments not yet tested [34], i.e., I and its
open right branches R(I), and is defined as O(I) = I V R(I),where R(I) =
Viedees(ry B=s(0)(I) and R_s(0y(I) = ~L A <5 for £ € decs(I). Consider I =
ablededf, O(I) = (aAbAcAdNeA f)V (=bAa)V (meAaAbAcAd). Similarly,
the pending models of F are the satisying assignments not yet found, F' A O(I).

3 Chronological CDCL for CNF-to-d-DNNF Compilation

In static component analysis the component structure is computed once, typically
as a preprocessing step, and not altered during the further execution. In contrast,
in our approach the component structure is computed iteratively adopting dy-
namic component analysis. Algorithm 1 provides a general schema in pseudocode.
Lines 1-9 and 14 describe CDCL-based model enumeration with chronological
backtracking [34], while lines 10-13 capture component analysis.

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 5

F ‘(a)/\(ﬁa\/ﬁb\/c\/d)/\(ﬁa\/ﬁb\/e\/f)/\(b\/ﬁc\/e)/\(b\/d\/f)/\(g\/h)‘ 0

ComposeEnd | | aA(gV-gAh)A
Unit | % (bA(eV=ecNd)A(eV=eA f)V=bA(cAeV—=e)A(dV—dAf))

‘(a)/\(ﬂa\/ﬂb\/c\/d)/\(ﬂa\/—‘b\/e\/f)/\(b\/—\c\/e)/\(b\/d\/f)/\(g\/h)‘ 0

bA(cVoeNd)A(eV e f)V
—bA(cAheV=e)A(dV-dA f)

—
| | Decompose gV -gAh

01 ‘(ﬂb\/c\/d)/\(—\b\/e\/f) (b\/—\c\/e)/\(b\/d\/f)‘ (gvh)] o2

a ComposeEnd Tl S~ bA(cAeV—e)A(dV—=dA f)
Decide ComposeBack

01 ‘(—\b\/c\/d)/\(—‘b\/e\/f)/\(b\/—‘c\/e)/\(b\/d\/f‘ ‘—‘b\/c\/d /\(—‘b\/e\/f)/\(VoeVe) A (b\/d\/f‘ 02

bA(eV=ecANd)A(eV—eAf)

cV-eNd eV-eAf cheV e dV—dA f

Decompose Decompose

011 012 021

Fig. 1. Component structure of F' created by ABsTrRaAcT CNF2DDNNF.

Now assume unit propagation has been carried out until completion, no con-
flict has occurred and there are still unassigned variables (line 10). If F|; can
be decomposed into two formulae G and H, we call CNF2dDNNF recursively
on G and H, conjoin the outcomes of these computations with I and add the
result to M (line 11). If I contains no decisions, the search space has been ex-
plored exhaustively, otherwise chronological backtracking occurs (lines 12-13).
The working of our approach is shown by an example.

Ezample 1. Let V = {a,b,c,d,e, f,g,h} be a set if propositional variables and
F = (a)A(—aV-bVeVd)A(—aV-bVeV fYAN(DV-ecVe)ADVAV f)A(gVh)bea
formula defined over V. The execution is depicted as a tree in Fig. 1. For the sake
of readability, we show only the formula on which a rule is executed, represented by
a box annotated with its component level. Black arrows correspond to “downward”
rule applications, while violet (gray) arrows represent “upwards” rule applications
and are annotated with the formula returned by the computation of a component.
Ignore the rule names and component levels for now, they are intended to clarify
the working of our calculus which is presented in Sec.4. We see that first a is
propagated, denoted by the black vertical arrow annotated with a and the name
of the applied rule (Unit). The residual of F' under a is F|, = (=bV eV d) A (=bV
eVHNDBV-eve)ADbVdAV f)A(gVh) (not shown). It contains no unit clause
but can be decomposed into (=bVeVd)A(=bVeV fYA(DV—eVe)A(bVdV f) and
(9Vh). Two new (sub)components are created (by applying rule Decompose) with
component level 01 and 02, respectively, represented by the shadowed boxes.
Since (g V h) can not be decomposed further, model enumeration with chrono-
logical CDCL is executed on it (not shown) by deciding ¢ (rule Decide) satisfying
(g V h), followed by backtracking chronologically (BackTrue), which amounts to
negating the value of the most recent decision g, and propagating h (Unit). The
processing of (g h) terminates with gV —gAh (CompTrue). But before this result
can be used further, the subcomponent at component level 01 needs to be pro-

6 S. Mdhle

cessed. Its formula is F' = (—=bVeVd)A(=bVeV fIN(DV—eVe)A(bVAV f). Tt neither
contains a unit nor can it be decomposed, hence we take a decision, let’s say, b®.
Now F'|, = (eVd) A (eV f), which is decomposed into two components with one
clause each and component level 011 and 012, respectively (Decompose). These
formulae can not be decomposed further, and they are processed independently
similarly to (g V h). Before F’ was decomposed, a decision was taken, and we
backtrack combining the results of its subcomponents (ComposeBack). We have
F'|_p = (meVe)A(dV f) giving rise to two components with component level 021
and 022, respectively. They are processed and their results combined, after which
the results of the subcomponents of the root component are conjoined with a.
There is no decision on the trail, and the process terminates (ComposeEnd).

4 Calculus

Due to its recursive nature, combining the results computed for subcomponents
in CNF2dDNNF is straightforward. In our non-recursive formalization, a method
is needed for matching subcomponents and their parent. For this purpose, a
component level is associated with each component. It is defined as a string of
elements of NT as follows. Suppose a component is assigned level d and assume it
is decomposed into two subformulae. Its subcomponents are assigned component
level d - 1 and d - 2, respectively, and the level of their parent is given by the
substring consisting of all but the last element of their level. The root component
holds the input formula, it has no parent and component level zero. A component
is closed if no rule can be applied to it, and decomposed if either at least one of
its subcomponents is not closed or its subcomponents are closed but their results
are not yet combined. Components which are neither closed nor decomposed are
open.? Closed components may be discarded as soon as their results are combined,
and the computation stops as soon as the root component is closed. With these
remarks, we are now ready to present our calculus.

We describe our algorithm in terms of a state transition system ABSTRACT
CNF2DDNNEF over a set of global states S, a transition relation ~» C S x S and
an initial global state Sy. A global state is a set of components. A component C is
described as a seven-tuple (F, V, d, ¢, I, M, §)*, where s denotes its component
state. It is ¢ if C is closed, f if F' is decomposed, and o if C is open. The first
two elements F' and V refer to a formula and its variables. The third element d
denotes the component level of C. If d # 0, then d € {l -1, - 2}, where [is
the component level of the parent component of C. In this manner, the compo-
nent level keeps track of the decomposition structure of F' and is used to match
parent components and their subcomponents. The number of subcomponents
of C is given by ¢, while I and § refer to a trail ranging over variables in V' and
a decision level function with domain V', respectively. Finally, M is a formula
in d-DNNF representing the models of F' found so far. A component is initialized
by (F,V,d, 0,e, L, 00)° and closed after its computation has terminated, i.e.,

2 The differentiation between open and decomposed components is purely technical
and needed for the termination proof in Sec. 5.

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 7

(F,V,d, 0, I, M, d)°. The initial global state Sy = {Cp} consists of the root com-
ponent Co = (F, V, 0, 0, e, L, 00)° with F" and V' denoting the input formula and
V = var(F), while the final global state is given by S,, = {(F, V, 0, 0, I, M, §)¢}
where M = F is in d-DNNF. The transition relation ~+ is defined as the union
of transition relations ~+g, where R is either Unit, Decide, BackTrue, BackFalse,
CompTrue, CompFalse, Decompose, ComposeBack or ComposeEnd. Our calculus
contains three types of rules, which can abstractely be described as follows:

Q SL‘H{C} R SL‘HC/, ﬁ! SL‘H{C} R SL‘H{C/,Cl,CQ}7 v SH’J{C,Cl,CQ} R SH’J{C/}

In this description, S refers to the subset of the current global state consisting
of all components which are not touched by rule R, with & denoting the dis-
joint set union, e.g., in o, C,C' ¢ S. An « rule affects a component C turning it
into C’. The rules Unit, Decide, BackTrue, BackFalse, CompTrue, and CompTrue
are « rules. A 3 rule modifies C obtaining C’ and creates two new components Cy
and Cy. Rule Decompose is the only . Finally, a v rule removes components Cy
and Cy from the global state and modifies their parent C. Rules ComposeBack
and ComposeEnd are -y rules. The rules are listed in Fig. 2.

Model computation. Rules Unit, Decide, BackTrue, BackFalse, CompTrue, and
CompFalse execute model enumeration with chronological CDCL [34] and are
applicable exclusively to open components. Unit literals are assigned the decision
level of their reason, which might be lower than the current decision level (rule
Unit). Decisions can be taken only if the processed formula is not decompos-
able (Decide). Backtracking occurs chronologically, i.e., to the second highest
decision level on the trail, after finding a model (BackTrue) and to the decision
level preceding the conflict level after conflict analysis (BackFalse), respectively.
In the latter case, the propagated literal is assigned the lowest level at which
the learned clause becomes unit and to which a SAT solver implementing CDCL
with non-chronological backtracking would backtrack to. Since the literals might
not be ordered on the trail in ascending order with respect to their decision level,
a non-contiguous part of it is discarded. Finally, a component is closed if its trail
contains no decisions and either satisfies (CompTrue) or falsifies (CompFalse) its
formula. In the former case, the newly found model is recorded.

Component analysis. Rules Decompose, ComposeBack, and ComposeEnd cap-
ture the decomposition of a formula and the combination of the models of its
subformulae and thus affect multiple components.

Decompose. The state of the parent component C with formula F' is o (open).
The trail I neither satisfies nor falsifies F', and F|; contains no unit clause but can
be partitioned into two formulae G and H defined over disjoint sets of variables.
Subcomponents for G and H are created, the number of subcomponents of C is
set to two and its state is changed to f (decomposed). Notice that C can only be
processed further after its subcomponents are closed.

ComposeBack. The state of the parent component C with formula F'is f (decom-
posed). Its subcomponents Ci and Cy with formulae G and H, respectively, have
state ¢ (closed). Furthermore and N = G and O = H, hence F|; = I AN A O,
which is added to M. This corresponds to adding multiple models of F' to M in

8 S. Mdhle

Unit: SW{(F, V,d, 0,1, M, 6)°} ~wume SW{(F, V,d, 0,16 M, [t a))°} if
L € F|; and exists C € F with {£} = C|; and a % §(C\ {€})

Decide: SW{(F,V,d, 0,1, M,8)°} ~pecite SWI{(F, V,d,0, 1t M, 5[0+ a])°} if
Fl1 #T and L ¢ F|; and units(F|;) =0 and var({) € V and §(¢) = co and
a®™§(I)+1 and there exist no G and H such that G A H = F|; and
var(G) Nvar(H) = 0

BackTrue: SW{(F,V,d, 0,1, M,5)°} ~BackTrue
SW{(F,V,d, 0, PKl, MVI,5[L ool —e])°} if Fly=T and
PQYET and D% ~decs(I) and e+ 1% §(D)=6(I) and £€ D and
e=6(D\{£})=6(P) and K & Q<. and LE Qs.

BackFalse: SW{(F, V,d, 0, I, M, 8)°} ~>packFalse
SW{(F,V,d, 0, PK{, M, §[L +— oo][{ — j])°} if exists C € F and
exists D with PQ X T and C|; =1 and ¢ % §(C)=8(D) >0 such that
e D and —fedecs(I) and lg=L1 and FA-M =D and
FESD\{}) and bEF(P)=c—1 and K = Q< and L= Qs

CompTrue: SW{(F, V. d, 0, I, M, §)°} ~scomptrue SW{(F, V, d, 0, I, MV I, 6} if
Flr=T and decs(I) =0

CompFalse: SWU{(F,V,d, 0,1, M, 8)°} ~>compralse SW{(F, V,d, 0,1, M,)} if
exists C € F and C|; =1 and §(C)=0

Decompose: SW{(F, V, d, 0, I, M, §)°} ~>pecompose
SW{(F,V,d, 2,1, M, (5)f,(G, U,d-1,0,¢e, L, 00)° (H, W,d-2,0,¢, L,)} if
Fl1#7T and 1 & F|; and units(F|;) =0 and GAH % F|; and
U var(@) and W €var(H) and UNW =0

ComposeBack: SW{(F, V, d, 2, I, M, 67),

(G, U, d' 17 U, JG,]V7 5G)C, (H, W, d-2, 0, JH, O, (51—1)(‘} ”\”ComposeBack
SW{(F,V,1,0, PKt, MV (I AN AO), §|L s oo][l = €])°} if PQET and
D% —decs(I) and e+ 1% §(D)=6(I) and £ € D and

e=06(D\{t}) =6(P) and K = Qcc and L= Qs

ComposeEnd: Sw{(F,V, d, 2, I, M, §)¢,

(G,U,d-1,0, Ja, N, 60)¢,(H, W, d-2,0, Ju, O, §0)°} ~ComposeEnd
SW{(F,V,d,0,I, MV (IANAO), 5)°} if decs(I)=0

Fig.2. ABsTracT CNF2DDNNTF transition rules.

one step, which can easily be seen by applying the distributive laws to I AN A O
which gives us a DSOP formula whose disjuncts are satisfying assignments of F'|;.
The search space has not yet been processed exhaustively (6(D) > 0), backtrack-
ing to the second highest decision level occurs, and the state of C is changed
back to o (open). Finally, C¢ and Cy are removed from the global state. If I can
not be extended to a model of F, either N =1 orO=1Land IANAO = 1.
Otherwise, I A N A O # 1. Both cases are captured with one single rule.

ComposeEnd.

The state of the parent component C with formula F is f (decom-

posed). Its subcomponents Ce and Cy with formulae G and H, respectively, are
closed. Furthermore, N = G and O = H, hence F|; = I AN A O, which is added
to M. The search space has been processed exhaustively (decs(I) = (}), and the
state of C is set to ¢ (closed). Finally, C; and Cy are removed from the global
state. As in rule ComposeBack, either IANAO =1L or IANAO # 1.

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 9
5 Proofs

For proving correctness, we first show that our calculus is sound by identifying
invariants which need to hold in a sound global state and show that they still hold
after the execution of any rule. Then we prove that for any closed component it
holds that M = F and that ABSTRACT CNF2DDNNF can not get stuck and
terminates in a correct state. Showing termination concludes our proof.

Definition 1 (Sound Global State). A global state S is sound if for all its
components C = (F, V, d, ¢, I, M, §)° the following invariants hold:

(1) Yk, l € decs(I) . 7(I,k) < 7(I,0) = (k) < d(¥)

(2) 6(decs(I)) ={1,...,6(1)}

(3) ¥n e N. F A=M A decs¢,,(I) = I<y, provided C is open or decomposed

(4) M v O(I) is a d-DNNF, provided C is open or decomposed

(5) MVFAO(I)=F

(6) ¢>0iff (A) c=2, (B)C is decomposed, and (C) S contains two components
Ca = (G, var(G), d-1, ¢g, Ja, N, 6¢)*,Cq = (H, var(H), d-2, cq, Ju, O, du)*,
such that F|y = G A H and var(G) Nvar(H) = ()

(7) ifc =2 and S contains two components Cc = (G, var(G), d-1, 0, Jg, N, dg)°
and Cyg = (H, var(H), d-2,0, Jy, O,)¢, then F|; =IANAO

(8) If C is closed, then decs(I) = ()

Lemma 1 (Soundness of the Initial Global State). The initial global state
So={(F,V,0,0,¢, L, 00)°} is sound.

Proof. Due to I = € and ¢ = 0 and since the (root) component is open, all
invariants in Definition 1 are trivially met.

Theorem 1 (Soundness of ABSTRACT CNF2DDNNF Rules). The
rules of ABSTRACT CNF2DDNNF preserve soundness, i.e., they transform a
sound global state into another sound global state.

Proof. The proof is carried out by induction over the rule applications. We assume
that prior to the application of a rule the invariants in Definition 1 are met and
show that they also hold in the target state. The (parent) component in the
original state is denoted by C = (F, V, d, ¢, I, M, §)® and in the target state by
C'=(F,V,d,d,I' M, §)°. Tts subcomponents, if there are any, are written
Ce = (G, var(G),d-1, cg, J, N, 6g)°, Cy = (H, var(H), d- 2, cg, K, O, §g)*.

Unit, Decide, BackTrue, and BackFalse: Apart from the additional elements V', d, ¢
and the component state s, the rules are defined as in the former calculus [34].
The arguments given in the proof there apply here as well, and after applying
rules Unit, Decide, BackTrue, or BackFalse, invariants (1) — (5) hold. Notice that
in the proof of invariant (4), it suffices to replace “DSOP” by “d-DNNF”, since
the relevant property here is determinism. Since ¢’ = 0, invariants (6) and (7) do
not apply. An open state is mapped to an open state, hence (8) holds.

10 S. Mahle

CompTrue: Invariants (1) and (2) hold, since I remains unaffected. Since C’ is
closed, invariants (3) and (4) are trivially met. We know that M VFAO(I) = F
holds and need to prove that (M V I)V F AO(I) = F holds. Now decs(I) = 0,
hence R(I) = L, therefore O(I) = I. Since I |= F, we have that F'AI = I, hence
(MVvI)VEANO(I)=MVI=F due to the premise, and invariant (5) holds.
Since ¢/ =0 and I’ = I, invariants (6) — (8) are trivially met.

CompFalse: Invariants (1) and (2) hold, since I remains unaltered. Since C’ is
closed, invariants (3) and (4) are trivially satisfied. For showing that M V F' A
O(I) = F holds, we observe that R(I) = Rsc)(I) = L, due to decs(I) = 0, and
hence O(I) = I. Furthermore, F AT = 1. Hence, MV FAO(I) = M = F, due
to the premise, and invariant (5) holds. Due to ¢ = 0 and I’ = I and hence
decs(I’) =), invariants (6) — (8) are trivially satisfied.

Decompose: The parent component C remains unaltered except for ¢/ = 2 and
for its state, which becomes f. Both its subcomponents Cs and Cy are open,
and we have Jo = Jg = € and ¢g = cyg = 0. Therefore, invariants (1) — (5)
hold. Invariant (6) is satisfied by the definition of rule Decompose. Since C’ is
decomposed and Cg and Cy are open by definition, invariants (7) and (8) hold.

ComposeBack: It suffices to show that the application of rule ComposeBack
preserves the validity of the invariants for C’, since C¢ and Cy do not occur in
the target state anymore. The most recent decision literal is flipped, similar to
rule BackTrue. The same argument to the one given there applies, and invari-
ants (1) and (2) are satisfied. We need to show that F A—=(M V (I AN AO)) A
decs¢,(PK /) = (PKY)_, holds for all n. The decision levels of the literals in
P K do not change, excgpt for the one of ¢, which is decremented from e + 1
to e. The literal ¢ also stops from being a decision literal. Since 6(P K ¥{) = e,
we can assume n < e. Furthermore, FA—(M V (I AN A O)) Adecs¢,,(PK () =
(mIN(FA-MAdecs<,, (1)) V(FA-MA-(N A O)Adecsg, (1)), since £ is not a deci-
sion literal in P K¢ and I<. = P K and thus I¢,, = (P K)_, by definition. By ap-
plying the induction hypothesis, we get ﬂI/\FA—'M/\decggn(PKﬂ) E(PK)_,,
and hence F'A =(M V (I AN AO)) Adecs¢,(PK () = (PK),,. We still need
to show that FA—=(MV (IANAO))Adecs¢.(PK{) ={,as §({) =ein PK/
after applying ComposeBack and thus ¢ disappears from the proof obligation for
n < e. Notice that FA—D [= I using again the induction hypothesis for n = e+1.
This gives us F' A ~decs¢.(PK) A=l = I and thus F' A ~decs¢.(PK) A—I = ¢
by conditional contraposition, and invariant (3) holds.

For proving that invariant (4) holds, we consider two cases: (A) IANAO # L,
i.e., there exists an extension of I which satisfies F', and (B) IANAO = 1, ie.,
all extensions of I falsify F. For both cases, we know that IV O(I) is a d-DNNF.

(A) We need to show that MV (I AN AO)VO(PKY) is a d-DNNF. Due to
0(I) =e+1,wehave O(I) = IVR¢e11(I) = IVR<e(I)VR=c41(I). The pending
search space of P K ¢ is given by O(PK/{) = PK{V R¢.(PK/{). But PK = I,
and PK{¢ = I¢.{ = R_et1(I), since =¢ € decs(I) and §(—¢) = e+1. Furthermore,
R<.(PK?) = R¢.(PK),since £ € decs(PK () and 6(¢) = e, hence R¢ . (PK () =
R (I). We have O(PK {) = R—e11(I)V R¢.(I), hence O(PK{)VI = O(I) and
(MVI)VO(PK{)= MV O(I), which is a DSOP and hence a d-DNNF. Now

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 11

I, N, and O are defined over pairwise disjoint sets of variables by construction,
i.e., I AN A O is decomposable, and MV (I AN AO)VO(PKY) is a d-DNNF.

(B) We need to show that M VvV O(PK/) is a d-DNNF. As just shown,
OPK{)VI = O(). Now MV O(PK{) = MV Rgey1(I). Recalling that
Reey1(I) is equal to O(I) without I and M v O(I) is a d-DNNF by the premise,
M Vv O(PKY{) is a d-DNNF as well. Therefore, invariant (4) holds after the
application of rule ComposeBack.

For the proof of the validity of invariant (5), given M V F A O(I) = F, the
same two cases are relevant: (A) IANAO # L and (B) IANAO = L.

(A) We have to show that MV (IANAO)V (FANO(PKY{)) = F. From
OPKLHNVI =0(I) weget MV (FAO(I)) =MV (FAOPKL)VI) =
MV(FANO(PK{)V(FAI) = F.But FAI = INNAO. Therefore MV (FAO(I)) =
MV(FANOPKL)NIANANO)=MV{IANNANO)V(FANOPK()=F.

(B) We must show that M Vv (F'AO(PKY{)) = F. Similarly to (A) we have
MV (FAO(I) =MV (FAOPKL)V(FAI) =MV (FAOPKL)) = F, due
to F A I = F. Therefore, invariant (5) holds after applying rule ComposeBack.
We have ¢/ =0, and C’ is open, hence invariants (6) — (8) trivially hold.

ComposeEnd: It suffices to show that after applying rule ComposeBack the
invariants are met by C’, since its subcomponent states Cg and Cy do not occur
in the target state anymore. Due to I’ = I and decs(I) = () and since C’ is closed,
invariants (1) — (4) trivially hold.

For proving that invariant (5) holds after applying rule ComposeEnd, i.e., that
MV (IANNAO)V(FAO(I)) = F, the same two cases need to be distinguished:
(A)IANAO# Land (B)INNAO = 1.

(A) From decs(I) = 0, we get O(I) = I and F AO(I) = F A I. Recalling that
FAI=IANNAO,weobtain MV(IANAO)V(FAO)=MV(FAO)=F
by the premise.

(B) We have MV(IANNAO)V (FAO()) =MV (FAO(I)) = F by the
premise. Hence, invariant (5) holds after executing rule ComposeEnd. Invariants
(6) — (8) trivially hold, due to ¢ =0 and I’ = I and hence decs(I’) = 0.

Corollary 1 (Soundness of ABSTRACT CNF2DDNNF Run). ABSTRACT
CNF2DDNNF starting with an initial global state is sound.

Proof. The initial state is sound by Lemma 1, and all rule applications lead to a
sound state according to Theorem 1.

Lemma 2 (Correctness of Closed Component State). For any closed com-
ponent (F, V,d, 0, I, M, §)¢ it holds that M = F'.

Proof. Follows from Theorem 1, proof of invariant (5) for rules CompTrue, Comp-
False, and ComposeEnd, which are the only rules closing a component.

Theorem 2 (Correctness of Final Global State). In the final global state
S, ={(F,V,d, 0,1, M, 6)°} of ABSTRACT CNF2DDNNF M = F holds.

12 S. Mohle

Proof. Correctness of the closed root component follows from Lemma 2. We need
to show that the final global state contains exactly the closed root component.
The initial global state consists of the open root component. Additional com-
ponents are created exclusively by rule Decompose, and a parent component state
can only be closed by rule ComposeEnd, which also removes its subcomponents
from the global state. Hence the root component can only be closed if it has no
subcomponents. But since the initial global state contains exclusively the root
component, the final global state contains only the closed root component.

Theorem 3 (Progress). ABSTRACT CNF2DDNNF always makes progress.

Proof. The proof is conducted by induction over the rules. We show that as long
as the root component is not closed, a rule is applicable.

First the case of a component without subcomponents is considered. Let a
global state be SW{C}, where C = (F, V, d, 0, I, M, §)°, and assume F|; = T.
If decs(I) = (), rule CompTrue is applicable. Otherwise, we choose D = —decs(I).
We have §(D) = §(I) = e+ 1 and due to invariant (2), the clause D contains
exactly one literal ¢ such that 6(¢) = e + 1 and therefore §(D \ {¢}) = e. Now
we choose P and @ such that [= PQ and §(P) = e and in particular ¢|p = L.
After backtracking to decision level e, we have I¢. = P K, where K = Q<. and
Dl|p i = {¢}, and all preconditions of BackTrue are met.

If instead F'|; = L, there is a clause C' € F such that C|; = L. If 6(C) =
¢ = 0, rule CompFalse is applicable. Otherwise, by invariant (3) we have F A
M ANdecs¢ . (I) = (F A =M Adecsg.(I) A I¢. = I<.. Since I¢.(F) = L, also
FA-MANdecsg (I) NI, = F AN—-M Adecse¢.(I) = L. We choose =D = decs([)
obtaining FA=M A-D Al¢. = L, thus FA—-M |= D. Similarly to the proof of
progress given in Proposition 2 in our formalization of chronological CDCL [33],
but for b = ¢ — 1, it can be shown that all preconditions of rule BackFalse
hold. Notice that D is not added explicitly to F'. Instead, the clause D is used
exclusively to determine /.

Finally, if F|; & {T, L}, there are still unassigned variables. If there exists a
clause C' € F such that C|; = {¢}, the preconditions of rule Unit are satisfied.
Otherwise, if F'|; can be decomposed into formulae G and H where var(G) N
var(H) = (), the preconditions of rule Decompose are satisfied. Otherwise, there
is a literal ¢ with var(¢) € V and §(¢) = oo, and the preconditions of Decide hold.

Now suppose there exists a decomposed component, i.e., let a global state
be given by S w {C} where C = (F,V, d, 2, I, M, §)f. Due to invariant (6),
S contains two (sub)components Cq = (G, var(G), d - 1, ¢g, Ja, N, d¢)® and
Cyg = (H,var(H), d- 2, cp, Jg, O, dp)® such that F|; = G A H and var(G) N
var(H) = (). Assume s = ¢ for both Cg and Cg, i.e., both Cg and Cy are closed,
and cg = cyg = 0. If decs(I) = 0, rule ComposeEnd is applicable. Otherwise,
with the same argument as for rule BackTrue, we can show that all preconditions
of rule ComposeBack are satisfied. Now suppose s € {f, 0} for at least one of
Cq and Cp, i.e., at least one of Cg and Cp is not closed. Then the non-closed
component(s) can be further processed, and as soon as both C¢ and Cgr are closed,
rule ComposeEnd or ComposeBack can be applied. This proves that ABSTRACT
CNF2DDNNF always makes progress.

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 13

Unit: Decide:

S'w{(d,[l1,..., 1k 2,2,...,2],0)} S w{(dh,.. 1k22,...,2],0)}
>ACD >ACD

S'w{(d[l, - ,1k0,2,...,2],0)} S'wi{(d[l,. . ,k1,2,...,2],0)}
BackTrue: BackFalse:
SIL'U{(d,[ll,u.7lk,17lk+27...,Z‘V‘LO)} S,H’J{(d,[ll,...,lk71,lk+2,...,l|v|],0)}
>=ACD ~ACD
Slw{(d?[lh"'alk707l;c+27"'al\/V\]vO)} S,H-J{(dv[llv"'7lkvoal;c+23'"7l|,V|]7O)}
CompTrue: CompFalse:

S'w{(d,t,0)} =acp S'w{(dtc)} S'w{(d,t,0)} =acp S'w{(dt,c)}
Decompose:

S'w{(d,t,0)} =acp S’ W{(d,t, f),(d-1,[2,...,2],0),(d-2,[2,...,2],0)}

ComposeBack:

8/ @ {(dv [l17 i '7lk?7 17lk+27' . 'al\V\]7f)7 (d 17t17c)7 (d 2,t2,C)}
>~ACD
S W{(d, [, O, Uz Uy o))}

ComposeEnd:
8/ @ {(da t, f)7 (d : 17 t1, C)7 (d) 27t27 C)} ~ACD Sl W {(d7 t, C)}

Fig. 3. Rule applications lead to smaller global states.

Theorem 4 (Termination). ABSTRACT CNF2DDNNF always terminates.

Proof. We need to show that no infinite rule applications can happen. To this
end, we define a strict, well-founded ordering > acp on the global states and
show that S ~»g 7 implies S =acp T for all S,7 € S and rules in ABSTRACT
CNF2DDNNF. Global states are sets of components, and >=acp is the multiset
extension of a component ordering =c= (>, >tr, >cs), where >, =, and >
are orderings on component levels, trails, and component states, respectively.
We want to compare trails defined over the same set of variables V', and to
this end we represent them as lists over {0,1,2}. A trail I = ¢; ... ¢} defined
over V, where k < |V, is represented as [l1,...,l;,2,...,2], where [; = 0 if ¢;
is a propagation literal and I; = 1 if ¢; is a decision literal. The last |V| —m
positions with value 2 represent the unassigned variables. Trails defined over the
same variable set are encoded into lists of the same length. This representation
induces a lexicographic order >, on trails, and we define >, as the restriction
of >jex to {[l1,...,ljy|] | i € {0,1,2} for 1 <4 < [V}, ie., we have t; =y o if
t1 >lex t2. The ordering =, is well-founded, its minimal element is [0, ..., 0].
The component state takes values in {o, f,c}, and we define =5 as >, i.e.,
81 >cs S2 if 81 >jex S2. The minimal element of > is ¢, hence »s is well-founded.
Given two component levels dy and da, we define d; > do if length(d;) <
length(dz). This may seem somewhat counterintuitive but is needed to avoid that
the execution of rule Decompose results in a higher state due to the newly created

14 S. Mohle

DecomposeG: SW{(F, V,d, 0, I, M, §)°} ~>DecomposeG
SW{(F, V,d,n, I, M, 8 ((Gs, Us, d i, 0, e, L, 00)°)_y,} if F|; #T and
L ¢F|; and units(F|;) =0 and A", G; ¥ F|; and n>2 and
U; C{:Efvar(Gi) and U;NU; =0 for 1<4,j<n and i#j
ComposeBackG: Sw{(F, V, d, n, I, M, §)*,(Gs, Ui, d-i, 0, Ji, Ni, 6:))7=1} ~>ComposeBackG
SW{(F, V,d, 0, PKl, MV IAN, 8[L > oo][¢ — ¢])°} if PQ I and
DY ~decs(I) and e+ 1% §(D\ {¢})=6(I) and L€ D and
e=3D\{})=48(P) and K £ Q<. and LE Qsc and N A", N;
ComposeEndG: Sw{(F, V, d, n, I, M, 8), (T, Ui, d -, 0, Ji, Ni, 6:;)°)"_1} ~>ComposcEndG

def

SW{(F,V,d, 0,1, MVIAN,S[I—6)°} if decs(I) =0 and N LA™ N,

Fig. 4. Generalized transition rules.

(sub)components, since both their component state and their trail are of higher
order than those of their parent component. To see that > is well-founded,
recall that we consider finite variable sets. Their size provides an upper limit on
the length of the component level representation and a minimal element of .

Now we have all ingredients for the component ordering .= (>, >=tr, >cs)-
Let components C; and Cs be encoded as (dy,t1,s1) and (dsg, ta, s2), respectively.
We have C; = Co if C1 # Cy and dy = ds or di = do and either ¢; =y, to or
t1 = ty and $7 =5 So. Clearly >, is well-founded, since >,, >, and = are
well-founded. Finally, for two global states S and T, we have S =acp T if S # T
and for each component C such that C is larger in 7 than in S with respect to >,
S contains a component C’ that is larger in S than in 7. Since = is well-founded,
also = acp is well-founded. Figure 3 shows that each rule application leads to a
smaller global state, which concludes our proof.

6 Generalization

For the sake of simplicity, we have presented the case in which a formula is
partitioned into two subformulae. However, lifting our calculus to an arbitrary
number of subcomponents is straightforward. The generalized rules capturing
component-based reasoning are listed in Fig.4. In our generalized framework,
we have F|; = AI_, G, and accordingly the G; are required to be defined
over pairwise disjoint sets of variables (rule DecomposeG). As in ABSTRACT
CNF2DDNNF, rules ComposeBackG and ComposeEndG are applicable as soon
as all subcomponent states are closed.

7 Discussion

We have presented ABSTRACT CNF2DDNNF, a formal framework for compil-
ing a formula in CNF into d-DNNF combining CDCL-based model enumeration
with chronological backtracking [34] and dynamic component analysis [4]. If
exclusively the rules Unit, Decide, BackTrue, BackFalse, CompTrue, and Comp-
False are used, a DSOP representation of F' is computed. Unit propagation is

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 15

prioritized due to its potential to reduce the number of decisions and thus of
right branches to be explored. Favoring decompositions over decisions may also
result in shrinking a larger part of the search space processed by a single com-
putation. Our framework lays the theoretical foundation for practical All-SAT
and #SAT solving. Any implementation which can be modeled by ABSTRACT
CNF2DDNNF exhibits its properties, in particular its correctness, which has
been established in a rigorous proof.

Comparison with available tools. There exist other knowledge compilers ad-
dressing d-DNNFs. We want to mention ¢2D [20], Dsharp [37], and D4 [30], which
also execute an exhaustive search and conflict analysis. However, our approach
differs conceptually from these tools in several ways. The most prominent ones
are the use of CDCL with chronological backtracking [33,38] instead of CDCL
with non-chronological backtracking and the way the d-DNNF is created. Our
method generates DSOP representations of formulae which can not be decom-
posed further by an exhaustive (partial) model enumeration and then combines
the result, while the tools mentioned above generate the d-DNNF by recording
the execution trace as a graph [26,27]. As ABSTRACT CNF2DDNNF, both D4
and Dsharp adopt a dynamic decomposition strategy, while ¢2D constructs a
decomposition tree which it then uses for for component analysis.

Future research directions. We plan to implement a proof of concept of our
calculus in order to compare the size of the returned d-DNNF with the ones
obtained by ¢2D, D4, and Dsharp. For dynamic component analysis, one could
follow the algorithm implemented in COMPSAT [6], while dual reasoning [32]
and logical entailment [35] enable the detection of short partial models. This is
particularly interesting in tasks where the length of the d-DNNF is crucial, and
from this point of view, partial models are superior to total models. The dual rea-
soning approach has shown to be almost competitive on CNFs if the search space
is small, we therefore expect that component analysis boosts its performance. The
major challenge posed by the second method lies in an efficient implementation
of the oracle calls required by the entailment checks. It also would be interesting
to investigate the impact of dynamic component analysis on a recent implemen-
tation [46] of the former framework addressing model enumeration by means of
chronological CDCL [34]. Cache structures, being an inherent part of modern
knowledge compilers and #SAT solvers [11,16,19,20,31,30,37,41,42,47,49] due to
their positive impact on solver efficiency [1], should be added to any implementa-
tion of our framework. Finally, an important research topic is that of optimizing
the encoding of a formula making best use of component analysis [14]. Related
to this question is whether formulae stemming from real-world applications are
decomposable in general.

Acknowledgements My thanks go to Armin Biere for a fruitful discussion when
I got stuck in a first, very raw version of the proof, and to Martin Bromberger
for his input enhancing it.

16

S. Mahle

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Bacchus, F., Dalmao, S., Pitassi, T.: DPLL with caching: A new algorithm for
#SAT and Bayesian inference. Electron. Colloquium Comput. Complex. TR03-
003 (2003)

Barrett, A.: From hybrid systems to universal plans via domain compilation. In:
ICAPS. pp. 44-51. AAAT (2004)

Barrett, A.: Model compilation for real-time planning and diagnosis with feedback.
In: IJCAL pp. 1195-1200. Professional Book Center (2005)

Bayardo Jr., R., Pehoushek, J.: Counting models using connected components. In:
AAAT/TAAL pp. 157-162. AAAT Press / The MIT Press (2000)

Bernasconi, A., Ciriani, V., Luccio, F., Pagli, L..:. Compact DSOP and partial DSOP
forms. Theory Comput. Syst. 53(4), 583-608 (2013)

Biere, A., Sinz, C.: Decomposing SAT problems into connected components. J.
Satisf. Boolean Model. Comput. 2(1-4), 201-208 (2006)

Bollig, B., Buttkus, M.: On limitations of structured (deterministic) DNNFs. Theory
Comput. Syst. 64(5), 799-825 (2020)

Bollig, B., Farenholtz, M.: On the relation between structured d-DNNFs and SDDs.
Theory Comput. Syst. 65(2), 274-295 (2021)

Bova, S., Capelli, F., Mengel, S., Slivovsky, F.: On compiling CNFs into structured
deterministic DNNFs. In: SAT. Lecture Notes in Computer Science, vol. 9340, pp.
199-214. Springer (2015)

Bova, S., Capelli, F., Mengel, S., Slivovsky, F.: Knowledge compilation meets com-
munication complexity. In: IJCAL pp. 1008-1014. IJCAI/AAAI Press (2016)
Burchard, J., Schubert, T., Becker, B.: Laissez-faire caching for parallel #SAT
solving. In: SAT. Lecture Notes in Computer Science, vol. 9340, pp. 46-61. Springer
(2015)

Burchard, J., Schubert, T., Becker, B.: Distributed parallel #SAT solving. In: CLUS-
TER. pp. 326-335. IEEE Computer Society (2016)

Cadoli, M., Donini, F.M.: A survey on knowledge compilation. AT Commun. 10(3-4),
137-150 (1997)

Chavira, M., Darwiche, A.: Encoding CNFs to empower component analysis. In:
SAT. Lecture Notes in Computer Science, vol. 4121, pp. 61-74. Springer (2006)
Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational Bayesian networks for
exact inference. Int. J. Approx. Reason. 42(1-2), 4-20 (2006)

Chu, G., Harwood, A., Stuckey, P.J.: Cache conscious data structures for boolean
satisfiability solvers. J. Satisf. Boolean Model. Comput. 6(1-3), 99-120 (2009)
Darwiche, A.: Compiling knowledge into decomposable negation normal form. In:
IJCAL pp. 284-289. Morgan Kaufmann (1999)

Darwiche, A.: Decomposable negation normal norm. J. ACM 48(4), 608-647 (2001)
Darwiche, A.: On the tractable counting of theory models and its application to
truth maintenance and belief revision. J. Appl. Non Class. Logics 11(1-2), 11-34
(2001)

Darwiche, A.: New advances in compiling CNF into decomposable negation normal
form. In: ECAI pp. 328-332. I0S Press (2004)

Darwiche, A.: SDD: A new canonical representation of propositional knowledge
bases. In: IJCAL pp. 819-826. IJCAI/AAAI (2011)

Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229-264 (2002)

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 17

Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving.
Commun. ACM 5(7), 394-397 (1962)

Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201-215 (1960)

Fargier, H., Mengin, J.: A knowledge compilation map for conditional preference
statements-based languages. In: AAMAS. pp. 492-500. ACM (2021)

Huang, J., Darwiche, A.: DPLL with a trace: From SAT to knowledge compilation.
In: IJCAL pp. 156-162. Professional Book Center (2005)

Huang, J., Darwiche, A.: The language of search. J. Artif. Intell. Res. 29, 191-219
(2007)

Huang, X., Izza, Y., Ignatiev, A., Cooper, M.C., Asher, N., Marques-Silva, J.:
Tractable explanations for d-DNNF classifiers. In: AAAI pp. 5719-5728. AAAI
Press (2022)

Koriche, F., Lagniez, J., Marquis, P., Thomas, S.: Knowledge compilation for model
counting: Affine decision trees. In: IJCAIL pp. 947-953. IJCAI/AAAI (2013)
Lagniez, J., Marquis, P.: An improved Decision-DNNF compiler. In: IJCAI. pp.
667-673. ijcai.org (2017)

Lagniez, J., Marquis, P., Szczepanski, N.: DMC: A distributed model counter. In:
IJCAI pp. 1331-1338. ijcai.org (2018)

Mohle, S., Biere, A.: Dualizing projected model counting. In: ICTAI pp. 702-709.
IEEE (2018)

Mohle, S., Biere, A.: Backing backtracking. In: SAT. Lecture Notes in Computer
Science, vol. 11628, pp. 250-266. Springer (2019)

Mohle, S., Biere, A.: Combining conflict-driven clause learning and chronological
backtracking for propositional model counting. In: GCAIL. EPiC Series in Comput-
ing, vol. 65, pp. 113-126. EasyChair (2019)

Mohle, S., Sebastiani, R., Biere, A.: Four flavors of entailment. In: SAT. Lecture
Notes in Computer Science, vol. 12178, pp. 62—-71. Springer (2020)

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: DAC. pp. 530-535. ACM (2001)

Muise, C.J., Mcllraith, S.A., Beck, J.C., Hsu, E.I.: Dsharp: Fast d-DNNF compilation
with sharpSAT. In: Canadian Conference on Al. Lecture Notes in Computer Science,
vol. 7310, pp. 356-361. Springer (2012)

Nadel, A., Ryvchin, V.: Chronological backtracking. In: SAT. Lecture Notes in
Computer Science, vol. 10929, pp. 111-121. Springer (2018)

Palacios, H., Bonet, B., Darwiche, A., Geffner, H.: Pruning conformant plans by
counting models on compiled d-DNNF representations. In: ICAPS. pp. 141-150.
AAAT (2005)

Pipatsrisawat, K., Darwiche, A.: A new d-DNNF-based bound computation algo-
rithm for functional E-MAJSAT. In: IJCAI pp. 590-595 (2009)

Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: SAT (2004)

Sharma, S., Roy, S., Soos, M., Meel, K.S.: GANAK: A scalable probabilistic exact
model counter. In: IJCAI pp. 1169-1176. ijcai.org (2019)

Siddiqi, S.A., Huang, J.: Probabilistic sequential diagnosis by compilation. In:
ISAIM (2008)

Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In:
ICCAD. pp. 220-227. IEEE Computer Society / ACM (1996)

Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfi-
ability. IEEE Trans. Computers 48(5), 506-521 (1999)

18

46.

47.

48.

49.

S. Mahle

Spallitta, G., Sebastiani, R., Biere, A.: Enumerating disjoint partial models without
blocking clauses, manuscript submitted for publication

Thurley, M.: sharpSAT — counting models with advanced component caching and
implicit BCP. In: SAT. Lecture Notes in Computer Science, vol. 4121, pp. 424-429.
Springer (2006)

de Una, D., Gange, G., Schachte, P., Stuckey, P.J.: Compiling CP subproblems to
MDDs and d-DNNFs. Constraints An Int. J. 24(1), 56-93 (2019)

Zhang, L., Malik, S.: Cache performance of SAT solvers: a case study for efficient im-
plementation of algorithms. In: SAT. Lecture Notes in Computer Science, vol. 2919,
pp. 287-298. Springer (2003)

	An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL
	1 Introduction
	2 Preliminaries
	3 Chronological CDCL for CNF-to-d-DNNF Compilation
	4 Calculus
	5 Proofs
	6 Generalization
	7 Discussion
	Acknowledgements

