

"リ" informatik

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL

Sibylle Möhle

Max Planck Institute for Informatics

FroCoS, September 20-22, 2023

The Task: Knowledge Compilation

$$
F \longrightarrow \mathrm{KC}(F) \equiv F
$$

The Task: CNF-to-d-DNNF Compilation

Deterministic Decomposable Negation Normal Form

d-DNNF: $\quad F=(a \wedge(b \vee(\neg b \wedge c)) \wedge d) \vee(\neg a \wedge b)$

negations in front of variables
for all conjunctions: conjuncts do not share variables
for all disjunctions: disjuncts are pairwise contradicting

CNF or d-DNNF - Why Care?

CNF or d-DNNF - Why Care?

CNF vs. d-DNNF - the Model Counting Case

CNF: $\quad F=(\neg a \vee b \vee c) \wedge(\neg a \vee d) \wedge(a \vee b)$
d-DNNF: $\quad F^{\prime}=(a \wedge(b \vee(\neg b \wedge c)) \wedge d) \vee(\neg a \wedge b)$

CNF vs. d-DNNF - the Model Counting Case

CNF: $\quad F=(\neg a \vee b \vee c) \wedge(\neg a \vee d) \wedge(a \vee b)$

$$
\# F=? \quad \text { not that easy }
$$

d-DNNF: $\quad F^{\prime}=(a \wedge(b \vee(\neg b \wedge c)) \wedge d) \vee(\neg a \wedge b)$

$$
\# F^{\prime}=\left(1 \cdot\left(1 \cdot 2^{1}+1 \cdot 1 \cdot 2^{0}\right) \cdot 1\right) \cdot 2^{0}+(1 \cdot 1) \cdot 2^{2}=7
$$

What About State－of－the－Art Tools？

	CDCL	Backtracking	Formula construction	Decomposition
c2d 1	\boldsymbol{v}	non－chronological	record trace	static
dSharp 2	\boldsymbol{v}	non－chronological	record trace	dynamic
D4 3	\boldsymbol{v}	non－chronological	record trace	dynamic
ACD 4	\boldsymbol{v}	chronological	conjoin DSOPs	dynamic

[^0]
Contributions

- Abstract CNF2dDNNF - a calculus for CNF-to-d-DNNF compilation
- Combination of model enumeration with chronological CDCL with dynamic component analysis
- Formal correctness proof
- First CNF-to-d-DNNF compiler based on chronological CDCL

Outline of the Rest of the Talk

The working of Abstract CNF2dDNNF

Abstract CNF2dDNNF by an example

Recap and ideas for further work

The Main Idea

The Main Idea

From DSOP to d-DNNF

$$
\begin{aligned}
F & =(\neg a \vee b \vee c) \wedge(\neg a \vee d) \wedge(a \vee b) \\
\operatorname{DSOP}(F) & =(\underline{a} \wedge b \wedge \underline{d}) \vee(\underline{a} \wedge \neg b \wedge c \wedge \underline{d}) \vee(\neg a \wedge b)
\end{aligned}
$$

From DSOP to d-DNNF

$$
\begin{gathered}
F=(\neg a \vee b \vee c) \wedge(\neg a \vee d) \wedge(a \vee b) \\
\operatorname{DSOP}(F)=(\underline{a} \wedge b \wedge \underline{d}) \vee(\underline{a} \wedge \neg b \wedge c \wedge \underline{d}) \vee(\neg a \wedge b)
\end{gathered}
$$

$$
\mathrm{d}-\operatorname{DNNF}(F)=(\underline{a} \wedge(b \vee(\neg b \wedge c)) \wedge \underline{d}) \vee(\neg a \wedge b)
$$

CNF-to-d-DNNF Compilation

$$
(\neg a \vee b \vee c) \wedge(\neg a \vee d) \wedge(a \vee b) \quad 0
$$

CNF－to－d－DNNF Compilation

CNF-to-d-DNNF Compilation

$$
(a \wedge(b \vee(\neg b \wedge c)) \wedge d) \vee(\neg a \wedge b) \quad 0
$$

Model Counting in d-DNNF

(1) $F=G \wedge H \quad \Longrightarrow \quad \# F=\# G \cdot \# H$
provided $\operatorname{var}(G) \cup \operatorname{var}(H)=\operatorname{var}(F)$ and $\operatorname{var}(G) \cap \operatorname{var}(H)=\emptyset$
(2) $F=C \vee D \Longrightarrow \# F=2^{|\operatorname{var}(F)|-|\operatorname{var}(C)|}+2^{|\operatorname{var}(F)|-|\operatorname{var}(D)|}$ provided $C \wedge D \equiv \perp$

Model Counting in d-DNNF

(1) $F=G \wedge H \quad \Longrightarrow \quad \# F=\# G \cdot \# H$
provided $\operatorname{var}(G) \cup \operatorname{var}(H)=\operatorname{var}(F)$ and $\operatorname{var}(G) \cap \operatorname{var}(H)=\emptyset$
(2) $F=C \vee D \Longrightarrow \# F=2^{|\operatorname{var}(F)|-|\operatorname{var}(C)|}+2^{|\operatorname{var}(F)|-|\operatorname{var}(D)|}$ provided $C \wedge D \equiv \perp$
(1) $\quad F=(a \vee b) \wedge(c \vee d) \Longrightarrow \# F=3 \cdot 3=9$
$\mathcal{M}(F)=\{a b c d, a b c \neg d, a b \neg c d, a \neg b c d, a \neg b c \neg d, a \neg b \neg c d, \neg a b c d, \neg a b c \neg d, \neg a b \neg c d\}$

Model Counting in d-DNNF

(1) $F=G \wedge H \Longrightarrow \# F=\# G \cdot \# H$
provided $\operatorname{var}(G) \cup \operatorname{var}(H)=\operatorname{var}(F)$ and $\operatorname{var}(G) \cap \operatorname{var}(H)=\emptyset$
(2) $F=C \vee D \Longrightarrow \# F=2^{|\operatorname{var}(F)|-|\operatorname{var}(C)|}+2^{|\operatorname{var}(F)|-|\operatorname{var}(D)|}$ provided $C \wedge D \equiv \perp$
(1) $\quad F=(a \vee b) \wedge(c \vee d) \Longrightarrow \# F=3 \cdot 3=9$

$$
\mathcal{M}(F)=\{a b c d, a b c \neg d, a b \neg c d, a \neg b c d, a \neg b c \neg d, a \neg b \neg c d, \neg a b c d, \neg a b c \neg d, \neg a b \neg c d\}
$$

(2) $\quad F=a \vee(\neg a \wedge b \wedge c) \Longrightarrow \# F=2^{2}+2^{0}=5$
$\mathcal{M}(F)=\{a b c, a b \neg c, a \neg b c, a \neg b \neg c, \neg a b c\}$

Model Counting in d-DNNF

$$
\begin{align*}
F & =\underline{(a \wedge(b \vee(\neg b \wedge c)) \wedge d)} \vee \underline{(\neg a \wedge b)} \tag{2}\\
\# F & =\# \underline{(a \wedge} \wedge \underline{(b \vee(\neg b \wedge c)}) \wedge \underline{d}) \cdot 2^{0}+\#(\underline{\neg a} \wedge \underline{b}) \cdot 2^{2} \tag{1}\\
& =[\#(a) \cdot \# \underline{(b \vee} \underline{(\neg b \wedge c)}) \cdot \#(d)] \cdot 2^{0}+[\#(\neg a) \cdot \#(b)] \cdot 2^{2} \tag{2}\\
& =\left[1 \cdot\left[\#(b) \cdot 2^{1}+\#(\underline{\neg b} \wedge \underline{c})\right] \cdot 2^{0}\right]+[1 \cdot 1] \cdot 2^{2} \tag{1}\\
& =\left[1 \cdot\left[1 \cdot 2^{1}+[\#(\neg b) \cdot \#(c)] \cdot 2^{0}\right]+2^{2}\right. \\
& =\left[1 \cdot\left[1 \cdot 2^{1}+[1 \cdot 1] \cdot 2^{0}\right]+2^{2}=7\right.
\end{align*}
$$

This work

Ideas for future work

- CNF-to-d-DNNF compilation calculus
- Enumerative approach
- Based on chronological CDCL
- Formal proof of correctness
- Implementation (of proof of concept)
- Target compact formula representation
- Effect of decomposition on dual reasoning
- Investigate decomposability of formulae

This work

Ideas for future work

- CNF-to-d-DNNF compilation calculus
- Enumerative approach
- Based on chronological CDCL
- Formal proof of correctness
- Implementation (of proof of concept)
- Target compact formula representation
- Effect of decomposition on dual reasoning
- Investigate decomposability of formulae

$$
\text { Thank you for your attention })
$$

[^0]: ${ }^{1}$ Darwiche，ECAI＇04
 ${ }^{2}$ Muise et al．，CANAI＇12
 ${ }^{3}$ Lagniez \＆Marquis，IJCAl＇18
 ${ }^{4}$ Abstract CNF2dDNNF－this work

