Dualizing Projected Model Counting

Sibylle Möhle and Armin Biere

Institute for Formal Models and Verification Johannes Kepler University Linz

AVM / RiSE Workshop 2018 September 2018

X	У	F(x,y)
0	0	0
0	1	1
1	0	1
1	1	1

 $x \mid y \mid F(x,y) \mid \exists y.F(x,y)$

X	У	F(x, y)	$\exists y. F(x, y)$
0	0	0	1
0	1	1	1
1	0	1	1
1	1	1	1

F(X,Y) (arbitrary) propositional formula over variables X and Y with $X \cap Y = \emptyset$

- X relevant input variables
- Y irrelevant input variables

F(X,Y) (arbitrary) propositional formula over variables X and Y with $X \cap Y = \emptyset$

- X relevant input variables
- Y irrelevant input variables

We are interested in the number of models projected onto X:

$$\#\exists Y.F(X,Y)$$

(arbitrary) propositional formula over variables X and Y with $X \cap Y = \emptyset$ F(X, Y)

- relevant input variables
- irrelevant input variables

We are interested in the number of models projected onto X:

$$\#\exists Y.F(X,Y)$$

Example
$$F(X, Y) = x \vee y$$

$$X = \{x\}$$

$$Y = \{y\}$$

$$X = \{x\}$$
 $Y = \{y\}$ $\mathcal{M}(\exists Y.F(X,Y)) = \{x, \neg x\}$

$$\#\exists Y.F(X,Y)=2$$

F(X,Y) (arbitrary) propositional formula over variables X and Y with $X \cap Y = \emptyset$

- X relevant input variables
- Y irrelevant input variables

We are interested in the number of models projected onto X:

$$\#\exists Y.F(X,Y)$$

Example
$$F(X, Y) = x \vee y$$

$$X = \{x\}$$
 $Y = \{y\}$ $\mathcal{M}(\exists Y.F(X,Y)) = \{x, \neg x\}$ $\#\exists Y.F(X,Y) = 2$ $X = \{x,y\}$ $Y = \emptyset$ $\mathcal{M}(\exists Y.F(X,Y)) = \{xy, x\neg y, \neg xy\}$ $\#\exists Y.F(X,Y) = 3 = \#F(X,Y)$

Our Dual Approach Facilitates the Detection of Partial Models

```
$ cat clause.form
p | q | r | s
$ dualiza -e -r p,r,s clause.form
ALL SATISFYING ASSIGNMENTS
s
r !s
!r !s
$ dualiza -r p,r,s clause.form
NUMBER SATISFYING ASSIGNMENTS
8
```

```
$ dualiza -r p,r,s clause.form -l | grep RULE
c LOG 1 RULE UNX 1 -4
c LOG 1 RULE UNX 2 -4
c LOG 1 RULE BNOF 1 -4
c LOG 2 RULE UNX 3 -3
c LOG 2 RULE BNOF 2 -3
c LOG 3 RULE UNY 1 -2
c LOG 3 RULE ENO 1
```

Dual Representation of F(X, Y)

Dual Representation of F(X, Y)

 $\exists S.P(X,Y,S)$ $\exists T.N(X,Y,T)$ \Vdash F(X,Y) $\neg F(X,Y)$

The General Case – Duality with Projection onto Relevant Input Variables

 $\exists Y, S.P(X, Y, S)$ $\exists Y, T.N(X, Y, T)$ $\exists Y.F(X, Y)$ $\exists Y.\neg F(X, Y)$

A First Example

$$F(X,Y) = (p \lor q \lor r \lor s) \qquad X = \{p,r,s\} \qquad Y = \{q\}$$

$$P(X,Y,S) = (p \lor q \lor r \lor s) \qquad S = \emptyset$$

$$N(X,Y,T) = (\neg p) \land (\neg q) \land (\neg r) \land (\neg s) \qquad T = \emptyset$$

A First Example

$$F(X,Y) = (p \lor q \lor r \lor s) \qquad X = \{p,r,s\} \qquad Y = \{q\}$$

$$P(X,Y,S) = (p \lor q \lor r \lor s) \qquad S = \emptyset$$

$$N(X,Y,T) = (\neg p) \land (\neg q) \land (\neg r) \land (\neg s) \qquad T = \emptyset$$

Step	Rule	1	$P _I$	$N _I$	M	Found
0		()	$(p \lor q \lor r \lor s)$	$(\lnot p) \land (\lnot q) \land (\lnot r) \land (\lnot s)$	0	
1	UNXY	5	Ø	$(\neg p) \wedge (\neg q) \wedge (\neg r) \wedge ()$	0	
2	BN0F	$\neg s$	$(p \lor q \lor r)$	$(\neg p) \wedge (\neg q) \wedge (\neg r)$	4	S
3	UNXY	$\neg sr$	Ø	$(\neg \rho) \wedge (\neg q) \wedge ()$	4	
4	BN0F	$\neg s \neg r$	$(p\vee q)$	$(\neg \rho) \wedge (\neg q)$	6	$\neg sr$
5	UNXY	$\neg s \neg rq$	Ø	$(\neg p) \wedge ()$	6	
6	EN0	$\neg s \neg rq$	Ø	$(\neg p) \wedge ()$	8	$\neg s \neg r$

With the Non-Dual Approach Only Total Models Are Detected

$$F(X, Y) = (p \lor q \lor r \lor s)$$

$$P(X, Y, S) = (p \lor q \lor r \lor s)$$

$$X = \{p, r, s\}$$
 $Y = \{q\}$
 $S = \emptyset$

With the Non-Dual Approach Only Total Models Are Detected

$$F(X, Y) = (p \lor q \lor r \lor s)$$

$$P(X, Y, S) = (p \lor q \lor r \lor s)$$

$$X = \{p, r, s\}$$
 $Y = \{q\}$
 $S = \emptyset$

Step	Rule	1	$P _I$	М	Found
0		()	$(p \lor q \lor r \lor s)$	0	
1	DX	S	\emptyset	0	
2	DX	sr	\emptyset	0	
3	DX	srp	\emptyset	0	
4	DYS	srpq	\emptyset	0	
5	BP1F	sr¬p	\emptyset	1	srp
6	DYS	sr¬pq	Ø	1	
7	BP1F	s¬r	\emptyset	2	sr p
8	DX	s¬rp	Ø	2	
9	DYS	s¬rpq	\emptyset	2	
10	BP1F	$s \neg r \neg p$	Ø	3	s¬rp
11	DYS	$s \neg r \neg pq$	\emptyset	3	
12	BP1F	$\neg s$	$(p \vee q \vee r)$	4	s¬r¬p
:					

Can We Compete with State-Of-The-Art #SAT Solvers?

```
$ cat clause4.form
(x1 | x2 | x3 | x4)
```

Can We Compete with State-Of-The-Art #SAT Solvers?

\$ cat clause4.form
(x1 | x2 | x3 | x4)

Formula	Mode	sharpSAT [s]	Dualiza [s]
	dual	$<1\cdot 10^{-2}$	$<1\cdot 10^{-2}$
clause10	block	$<1\cdot10^{-2}$	$2\cdot 10^{-2}$
	flip	$<1\cdot 10^{-2}$	$<1\cdot10^{-2}$
clause20	block	$1\cdot 10^{-2}$	$9\cdot 10^{-1}$
Clause20	flip	$1\cdot 10^{-2}$	$2\cdot 10^{-1}$
clause30	block	$1\cdot 10^{-2}$	$4 \cdot 10^4$
Clauseso	flip	$1\cdot 10^{-2}$	$2 \cdot 10^2$
clause100	dual	$<1\cdot 10^{-2}$	$<1\cdot 10^{-2}$
clause1000	dual	$8 \cdot 10^{-2}$	$2\cdot 10^{-2}$
clause10000	dual	$1\cdot 10^1$	$2\cdot 10^{-1}$

Where Our Dual Approach Really Wins

```
$ cat nrp4.form
(x1 | x2 | x3 | x4) |
(x5 = x2 ^ x3 ^ x4) |
(x6 = x1 ^ x3 ^ x4) |
(x7 = x1 ^ x2 ^ x4) |
(x8 = x1 ^ x2 ^ x3)
```

Where Our Dual Approach Really Wins

\$	ca	at	nrp	o4	.for	cm		
(2	κ1		x 2		хЗ		x4)	
(2	κ5	=	x 2	^	х3	^	x4)	
(2	κ6	=	x 1	^	хЗ	^	x4)	
(2	κ7	=	x1	^	x 2	^	x4)	
()	82	=	x1	^	x 2	^	x3)	

Formula	Method	sharpSAT [s]	Dualiza [s]
nrp10	dual	$9\cdot 10^{-2}$	$<1\cdot 10^{-2}$
nrp20	dual	$7 \cdot 10^2$	$1\cdot 10^{-2}$
nrp21	dual	$2 \cdot 10^3$	$1\cdot 10^{-2}$
nrp22	dual	*	$1\cdot 10^{-2}$
nrp100	dual	*	$8\cdot 10^{-2}$
nrp1000	dual	*	$1\cdot 10^1$
nrp5000	dual	*	$2 \cdot 10^2$

Calculus

EP0: $(P, N, I, M) \rightsquigarrow_{\mathsf{EP0}} M$ if $\emptyset \in P|_I$ and $\mathrm{decs}(I) = \emptyset$ EP1: $(P, N, I, M) \rightsquigarrow_{\mathsf{EP1}} M + 2^{|X-I|}$ if $P|_I = \emptyset$ and $\mathrm{var}(\mathrm{decs}(I)) \cap X = \emptyset$ EN0: $(P, N, I, M) \rightsquigarrow_{\mathsf{FN0}} M + 2^{|X-I|}$ if $\emptyset \in N|_I$ and $\mathrm{var}(\mathrm{decs}(I)) \cap X = \emptyset$

BP0F: $(P, N, I\ell^d I', M) \rightsquigarrow_{\mathsf{BP0F}} (P, N, I\overline{\ell}^{f(m')}, M)$ if $\emptyset \in P|_{I\ell I'}$ and $\mathrm{var}(\mathrm{decs}(I')) = \emptyset$ and $m' = \sum \{m \mid \ell^{f(m)} \in I'\}$

JP0: $(P, N, II', M) \rightsquigarrow_{\mathsf{JP0}} (P \land C^r, N, I\ell', M - m')$ if $\emptyset \in P|_{II'}$ and $P \models C$ and $C|_I = \{\ell'\}$ and $m' = \sum \{m \mid \ell^{f(m)} \in I'\}$

 $\mathsf{BP1F:} (P, N, I\ell^d I', M) \rightsquigarrow_{\mathsf{BP1F}} (P, N, I\overline{\ell}^{f(m'+m'')}, M+m'') \quad \mathsf{if} \quad P|_{I\ell I'} = \emptyset \quad \mathsf{and} \quad \mathrm{var}(\ell) \in X \quad \mathsf{and} \quad \mathrm{var}(\mathrm{decs}(I')) \cap X = \emptyset \quad \mathsf{and} \quad m' = \sum \left\{ m \mid \ell^{f(m)} \in I' \right\} \quad \mathsf{and} \quad m'' = 2^{|X-I\ell I'|}$

BP1L: $(P, N, I\ell^d I', M) \rightsquigarrow_{\mathsf{BP1L}} (P \land D, N, I\overline{\ell}, M + m'')$ if $P|_{I\ell I'} = \emptyset$ and $\mathrm{var}(\ell) \in X$ and $\mathrm{var}(\mathrm{decs}(I')) \cap X = \emptyset$ and $m'' = 2^{|X - I\ell I'|}$ and $D = \pi(\neg \mathrm{decs}(I\ell), X)$

Calculus

```
BN0F: (P, N, I\ell^d I', M) \rightsquigarrow_{\mathsf{BN0F}} (P, N, I\overline{\ell}^{f(m'+m'')}, M+m'') if \emptyset \in N|_{I\ell I'} and \mathrm{var}(\ell) \in X and \mathrm{var}(\mathrm{decs}(I')) \cap X = \emptyset and m' = \sum \{m \mid \ell^{f(m)} \in I'\} and m'' = 2^{|X-I\ell I'|}
```

BN0L: $(P, N, I\ell^d I', M) \rightsquigarrow_{\mathsf{BN0L}} (P \land D, N, I\overline{\ell}, M + m'')$ if $\emptyset \in N|_{I\ell I'}$ and $\mathrm{var}(\ell) \in X$ and $\mathrm{var}(\mathrm{decs}(I')) \cap X = \emptyset$ and $m'' = 2^{|X - I\ell I'|}$ and $D = \pi(\neg \mathrm{decs}(I\ell), X)$

DX: $(P, N, I, M) \rightsquigarrow_{DX} (P, N, I\ell^d, M)$ if $\emptyset \not\in (P \land N)|_I$ and $units((P \land N)|_I) = \emptyset$ and $var(\ell) \in X - I$

DYS: $(P, N, I, M) \rightsquigarrow_{DYS} (P, N, I\ell^d, M)$ if $\emptyset \not\in (P \land N)|_I$ and $units((P \land N)|_I) = \emptyset$ and $var(\ell) \in (Y \cup S) - I$ and $X - I = \emptyset$

UP: $(P, N, I, M) \rightsquigarrow_{\mathsf{UP}} (P, N, I\ell, M)$ if $\{\ell\} \in P|_{I}$

 $\mathsf{UNXY} \colon (P, N, I, M) \rightsquigarrow_{\mathsf{UNXY}} (P, N, I\overline{\ell}^d, M) \quad \mathsf{if} \quad \{\ell\} \in N|_I \quad \mathsf{and} \quad \mathrm{var}(\ell) \in X \cup Y \quad \mathsf{and} \quad \emptyset \not\in P|_I \quad \mathsf{and} \quad \mathrm{units}(P|_I) = \emptyset$

UNT: $(P, N, I, M) \rightsquigarrow_{\mathsf{UNT}} (P, N, I\ell, M)$ if $\{\ell\} \in N|_I$ and $\mathrm{var}(\ell) \in T$ and $\emptyset \not\in P|_I$ and $\mathrm{units}(P|_I) = \emptyset$

FP: $(P \wedge C^r, N, I, M) \sim_{\mathsf{FP}} (P, N, I, M)$ if $\emptyset \notin P|_I$

Conclusion and Future Work

We are on the right track

- ▶ DUALIZA is competitive on some CNF formulae and
- ▶ outperforms state-of-the-art #SAT solvers on another class of formulae.

Conclusion and Future Work

We are on the right track

- DUALIZA is competitive on some CNF formulae and
- ▶ outperforms state-of-the-art #SAT solvers on another class of formulae.

In the near future, we plan to

- incorporate dual conflict analysis with backjumping and redundant clause learning,
- drop decision restrictions,
- capture component reasoning and
- weighted projected model counting for Bayesian reasoning,
- optimize circuit representation to improve CNF encoding, and
- explore dual preprocessing techniques.