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Projected Model Counting Generalized

F(X,Y) (arbitrary) propositional formula over variables X and Y with X NY = ()

X  relevant input variables
Y  irrelevant input variables

We are interested in the number of models projected onto X:

4IY .F(X,Y)

Example F(X,Y)=xVy

{y} M@EY.F(X,Y)) = {x,~x}
0 MEY.F(X,Y)) = {xy,xy, xy}

X = {x} Y
X ={x,y} Y

~



Our Dual Approach Facilitates the Detection of Partial Models

$ cat clause.form $ dualiza -r p,r,s clause.form -1 | grep RULE
plaglzrls c LOG 1 RULE UNX 1 -4

$ dualiza -e -r p,r,s clause.form c LOG 1 RULE UNX 2 -4

ALL SATISFYING ASSIGNMENTS c LOG 1 RULE BNOF 1 -4

S c LOG 2 RULE UNX 3 -3

r !s c LOG 2 RULE BNOF 2 -3

I'r Is c LOG 3 RULE UNY 1 -2

$ dualiza -r p,r,s clause.form c LOG 3 RULE ENO 1

NUMBER SATISFYING ASSIGNMENTS
3



Dual Representation of F(X,Y)
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Dual Representation of F(X,Y)

3S.P(X,Y,S) IT.N(X, Y, T)

F(X,Y) —F(X,Y)



The General Case — Duality with Projection onto Relevant Input Variables

3Y,S.P(X,Y,S) Y, T.N(X, Y, T)

IY.F(X,Y) JY.~F(X,Y)



A First Example

F(X,Y) =

5) =

P(X,Y,
X,Y,T)=

N(

(pVgVrVs)

(pVgVrVs)

(—p) A (—q)
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:{p,r,s}

Y =1{q}
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A First Example

(=p) A (—g) A (—r) A (—s)

Y =1{q}

Found

F(X,Y)
P(X,Y,S) =
NX,Y, T)=
Step Rule
0
1 UNXY
2 BNOF
3 UNXY
4 BNOF
5 UNXY
6 ENO

o oo~ p~ O o

—Sr

—STr




With the Non-Dual Approach Only Total Models Are Detected

FIX.Y)=(pVaVrVs) X ={p.r.s}
P(X,Y,S)=(pVqVrVs) S=1

Y ={q}
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With the Non-Dual Approach Only Total Models Are Detected

FIX,Y)=(pVqVrVs) X={p,r,s} Y ={q}
P(X,Y,S)=(pVqVrVs) S=1
Step Rule / Pl M Found
0 () (pVagVrVs) 0
1 DX s 0 0
2 DX sr 0 0
3 DX srp 0 0
4 DYS srpq 0 0
5 BP1F sr—p 0 1 srp
6 DYS sr—pq 0 1
7 BP1F s—r 0 2 srp
8 DX s—rp 0 2
9 DYS s—rpq 0 2
10 BP1F s—r—p 0 3 s—rp
11 DYS s—r—pq 0 3
12 BP1F —s (pVagVr) 4 s—r—p
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Can We Compete with State-Of-The-Art #SAT Solvers?

$ cat clause4d.form
(x1 | x2 | x3 | x4)
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Can We Compete with State-Of-The-Art #SAT Solvers?

$ cat clause4d.form
(x1 | x2 | x3 | x4)

Formula Mode sharpSAT [s] DUALIZA [s]

dual <1-1072 <1-1072
clausel0 block <1-10° 2.107°

flip <1-1072 <1-1072

block 1-1072 9.1071
clause20

flip 1-102 2.1071

block 1-1072 4.10%
clause30

flip 1-1072 2.1072
clausel00 dual <1-1072 <1-1072
clause1000 dual 8102 2.1072
clause10000 dual 1-10t 2.10°1
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Where Our Dual Approach Really Wins

$ cat
(x1 |
(x5 =
(x6 =
(x7 =
(x8 =

nrp4.

x2 |

x1 ~

x1 ~

form
x3 |

x3 ~

x2 ~

x4)
x4)
x4)
x4)
x3)
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Where Our Dual Approach Really Wins

$ cat
(x1 |

(x6 =
(x7 =
(x8 =

nrp4.

x2 |

x1 ~

x1

form
x3 |

x2 ~

x4)
x4)
x4)
x4)
x3)

Formula Method sharpSAT |s] DUALIZA [s]
nrpl0 dual 9.1072 <1-1072
nrp20 dual 7-102 1-102
nrp21 dual 2.103 1-1072
nrp22 dual * 1-102
nrp100 dual * 8-1072
nrp1000 dual * 1-10*

nrp5000 dual * 2.10?
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Calculus

EPO: (P,N,I,M) ~sgpg M if () € P|; and decs(/) =)
EP1: (P,N,I,M) ~sgpy M +2X=1if Pl =0 and var(decs(/)) N X =0

ENO: (P, N,I,M) ~sgnog M+2X11if e N|; and var(decs(/))NX =0

BPOF: (P, N, 1£91". M) ~sgpor (P, N, 10 M) if (€ Pl and var(decs(l’)) = 0 and
m =35 {m| (™ c?

JPO: (P, N, II',M) ~sypo (PAC N, IO, M—m) if Q€ Py and PE=C and C|;={¢} and
m =S {m| (™ e "}

(m/+m//)

BP1F: (P, N, 1691, M) ~sgpir (P, N, I M4+ m") if Plyy=0 and var(f) € X and
var(decs(I'))NX =0 and m" => {m| ¢fm) I'} and m" = oIX=1tr

BP1L: (P, N, 1091, M) ~sgpit (PAD,N, 1L, M+ m") if Plyy=0 and var(f) € X and
var(decs(/)) N X =0 and m" = 2% and D = 7(—decs(/¢), X)
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Calculus

(m/+m/l)

BNOF: (P, N, 191" M) ~sgnoe (P, N, 17 M+ m") if Be Ny and var(f) € X and
var(decs(I'))NX =0 and m => {m| ¢fm) 'ty and m" = DIX=1tl

BNOL: (P, N, 041", M) ~sgnor (PAD,N,IL,M+m") if 0 & N|y and var(f) € X and
var(decs(I')) N X =0 and m" = 2X"""1 and D = w(—decs(1£), X)

DX:  (P,N,I,M) ~spx (P,N,1t4, M) if @& (PAN), and units((P A N)|;) =0 and
var(¢) € X — |

DYS: (P,N,I,M) ~pys (P,N,1¢4 M) if O&(PAN)|, and units((P A N)|;) =0 and
var(f) e (YUS)—1 and X —1=10

Up: (PN, I,M) ~yp (P,N,1¢,M) if {l} € P|

UNXY: (P, N, I, M) ~sunxy (PN, 12% M) if {6} € N|, and var(f) € XUY and 0 & P|; and wnits(P|) = 0
UNT: (P,N,I,M) ~synt (P,N,1L,M) if {f} € N| and var(f) € T and 0 & P|; and units(P|;) = ()

FP: (PAC NI, M) ~gp (PN, I,M) if P
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Conclusion and Future Work

We are on the right track

» DUALIZA is competitive on some CNF formulae and

» outperforms state-of-the-art #SAT solvers on another class of formulae.
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Conclusion and Future Work

We are on the right track

» DUALIZA is competitive on some CNF formulae and

» outperforms state-of-the-art #SAT solvers on another class of formulae.

In the near future, we plan to

incorporate dual conflict analysis with backjumping and redundant clause learning,
drop decision restrictions,

capture component reasoning and

weighted projected model counting for Bayesian reasoning,

optimize circuit representation to improve CNF encoding, and

vV v v v v V¥

explore dual preprocessing techniques.
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